(847) 934-4500

Contact us today:

Category Archives: Siemens Machine Tool Systems

Siemens at EASTEC 2015

emailblast_01

computerGot a few minutes?

Learn to be a better machinist in 30 minutes or less at Eastec 2015!

Come to Siemens booth #2012 at the show and one of their machining experts will show you how easy it really is!

  • Reduce CNC programming, setup and machining times
  • Setup a program from a file and prep your offsets
  • Provide quick and reliable shopfloor program simulation
  • Run an actual part program in real-time
  • Use the data to calculate workflow — saving you time
  • Avoid machine component collision
  • Make yourself a more valuable employee to your shop or production department
  • And much more!

sinutrain

See the difference SINUTRAIN can really make
SINUTRAIN functions exactly the same way as an actual Siemens CNC system. This means you can test all of the operating modes of the graphical user interface step-by-step. Not only is SINUMERIK the top-performing machine tool control in shops worldwide, Siemens also offers training that’s second-to-none. You’ll quickly learn that, with Siemens onboard your machines — anything is possible.

Register to attend EASTEC — compliments of Siemens.

sinutrainorangeSimply participate in one of Siemens in-booth demonstrations during the show and you’ll receive your trial version free-of-charge!

Continue reading

Triumph Structures – Wichita Machines Wing Spars and Skins on Huge Dual Gantry Mill; Realizes 35 Percent Cycle Time Improvement

Zimmermann portal milling machine features twin gantries, twin rotary 6-axis milling heads, twin CNCs with completely independent operability to machine parts up to 960 inches in length

Triumph Structures – Wichita, a Triumph Group company, brought a unique challenge to the engineers at Zimmermann (Novi, Michigan) and the solution has yielded various benefits to this major supplier of aerospace components. As Harry Thurmond – President at Triumph Structures – Wichita explains, “We had requirements for spars and stringers that often reached 22’ in length, but we also do a variety of production jobs on smaller sections such as bulkheads. This creates the need for fast, reliable and adaptable machine tools.” In this current mode of manufacturing, Triumph Structures – Wichita considered a variety of options to expand on the capabilities of their existing milling machines, some of which had been in operation for decades.

Triumph Structures–Wichita Machines Wing Spars and Skins on Huge Dual Gantry Mill; Realizes 35 Percent Cycle Time Improvement | Siemens Machine Tool Systems

View down the entire length of the workspace, showing the twin heads and the break wall removed for continuous machining a single workpiece, with co-dependent gantry and CNC operability

Triumph Structures – Wichita specializes in complex, high speed, monolithic precision machining and sub assembly of Aluminum and Titanium structural airframe components often with wall thicknesses down to 0.020 inches. Currently, 21 individual 5-axis machining centers are resident in this facility, with a maximum length of 960 inches. Over 20 other 3-axis and 4-axis machines complete the machining capability for aluminum structures. Triumph Structures – Wichita runs a gamut from build-to-print precision machining of aluminum and hard metal, small-to-large parts, especially aircraft wing spars, Skins, bulkheads, and landing gear components.

While the machine capabilities at Triumph Structures – Wichita were clearly substantial, it was determined that a need existed for a particular machine that could be used to serve multiple purposes. First, the machining of very long parts with volumetric compensation to manage material expansion and the tool tip position over a very long cutting cycle, often multiple days, was required. Triumph Structures – Wichita has extensive experience in this area, given its market focus. However, it was posited that a single machine might also be capable of running multiple smaller parts or operate in twin fashion, occasionally using the entire machine bed with both heads working the same part in tandem. Clearly, the latter scenario would demand extremely close attention to collision avoidance between the gantries, as well as the consistency of surface machining at the points where the twin machining heads intersected.

Triumph Structures–Wichita Machines Wing Spars and Skins on Huge Dual Gantry Mill; Realizes 35 Percent Cycle Time Improvement | Siemens Machine Tool Systems

Zimmermann twin gantry portal milling machine built to suit the special requirements of Triumph Structures in Wichita

For the requirements presented by Triumph Structures – Wichita, the optimal machine necessitated that Zimmermann, a longtime partner and portal machine supplier to Triumph, modify its popular FZ100 machine with twin gantries, each equipped with a three rotary axis head and independent Siemens Sinumerik 840D sl CNC.

As Zimmermann Inc. President Matthias Tockook notes, “We had a variety of machine styles available, but the best solution was a head with three rotary axes, A-B-C integrated in a forked milling head. This provided simultaneous 6-axis cutting in a very compact design, with no pole position, less overall axis rotation, a constant feedrate capability and improved surface quality.”

Triumph Structures–Wichita Machines Wing Spars and Skins on Huge Dual Gantry Mill; Realizes 35 Percent Cycle Time Improvement | Siemens Machine Tool Systems

A unique head design from Zimmermann is based on three rotary axes. Full 6-axis machining is achieved with 125 RMS inside and 32 RMS outside finish

The individual head machining time scenario was further detailed. If the maximum time was achieved using an A- and C-head with infinite C-axis, the alternative A-B-C integrated rotary axis head could accomplish the same work in 25 percent of that time.

In designing the final work envelope and machine structure, Zimmermann engineers determined the best solution was a removable break wall built into the midpoint of the machine bed, which would allow completely independent operation of the entire machine, literally running as two machine tools in one. When removed, the machine bed could accept parts up to 960 inches in length and process them using the twin heads working in tandem and monitored for total collision avoidance by the two CNCs onboard. Owing to the unique volumetric compensation feature of the Siemens CNC, where the execution of the machining is based upon the actual tool tip position, the point of intersection for the twin heads was found to be an easily addressed and resolved issue. Surface integrity on the workpiece would be preserved, while machine and operator safety would remain paramount.

This machine was built over a period of eighteen months. Parts were sent to Zimmerman to be fully tested prior to being erected onsite at Triumph Structures – Wichita.

Triumph Structures–Wichita Machines Wing Spars and Skins on Huge Dual Gantry Mill; Realizes 35 Percent Cycle Time Improvement | Siemens Machine Tool Systems

With doors closed and the break wall installed, photo also shows one of the two Siemens Sinumerik CNC units on the machine. In this setup, each of the two work envelopes of the machine can run simultaneously yet completely independent of the other

In operation, according to Harry Thurmond, the Zimmermann head design provides significant advantages in speed on the typical peaks and pockets found in aerospace structure machining, working in tandem with the look-ahead feature on the CNC. “It slows down and speeds up in anticipation of the next required surface contour. Over long run times, this can translate into an improvement of 35 percent or better, because there is no deburring or polishing required. We routinely get better than a 125 RMS finish on inside pocket surfaces and up to a 32 RMS on the outside of the Series 7000 aluminums we run. Combined with the flexibility of the machine to work a single structure or individual workpieces simultaneously, we have been quite satisfied with the results to date.” On longer runs, Thurmond adds, the chilled coolant used on the Zimmermann is helpful in minimizing thermal expansion of the material, a critical factor in long run machining work here. An added advantage, the machine is used to produce workholding and fixturing devices. Lastly, Harry noted that the Zimmermann machine is equipped with test probes, so it can be used as a CMM to measure workpieces in process.

The 3-axis head avoids the pole position of the traditional 2-axis A-C head at A = 0º. In this Zimmermann head design, the B-axis moves +/- 15º inside a rigid curved guideway for handling the inner sloping and especially the pockets typically found on aero structures, so simultaneous 6-axis machining is achieved with high surface finish integrity.

The new machine at Triumph Structures – Wichita is further equipped with a stationary clamping table, fixed mounted side walls, DemTec composite fill on the base and side walls for enhanced stability and vibration damping. Backlash-free drives on both sides with rack-and-pinion mechanisms are sealed from contamination and guided on both sides. All axes have feed rates to 60m/min and accelerations to 4m/sec2. Each head can access a 60-position toolchanger on the machine.

For communication of data from the machine, Triumph Structures – Wichita integrates the CNCs into their Ethernet network via DNC and hard-wiring. Through a remote monitoring feature on the Sinumerik 840D SL CNC, Zimmermann is also able to maintain awareness of all conditions on the machine in real-time.

At Triumph Structures – Wichita, design to CENIT CAM post-processor operations are done through Vericut simulation at the CAD station.

Triumph Structures–Wichita Machines Wing Spars and Skins on Huge Dual Gantry Mill; Realizes 35 Percent Cycle Time Improvement | Siemens Machine Tool Systems

A unique head design from Zimmermann is based on three rotary axes. Full 6-axis machining is achieved with 125 RMS inside and 32 RMS outside finish

Harry Thurmond notes, “We had grown steadily over the last decades, since our incorporation of 5-axis work in the 1990s, and were ready to jump to a new level of competence for our customers, who represent the top players in both commercial and military aircraft, making Triumph Structures – Wichita a more value-adding supplier. Our part length capability had been 22’ here in Wichita and we were committed to expanding it, to compete in the 40’-80’ part ranges. As with all aerospace structure machining, material removal rates are extremely high. We can start with a 5600 lb. workpiece that ends up at 100 lb., for example.” Harry further noted this means the machines at Triumph Structures – Wichita must be very robust with high-precision control of the cutting cycles, which often run for multiple days.

Commenting on the CNC selection, Matthias Tockook of Zimmermann observed, “With all the challenges we had on this machine, including the axes of motion, the integration of the twin gantry movements, the substantial safety factors involved and the need for independent and also co-dependent gantry operations, we quickly determined that only twin Sinumerik 840D sl CNCs could handle this job.” The machine built for Triumph Structures – Wichita also includes Siemens servo motors and drives plus spindles running at 73kW/95HP and 27,000 rpm in operation.

Triumph Structures – Wichita specializes in complex, high speed, monolithic precision machining and sub assembly of Aluminum and Titanium structural airframe components.

For more information on this story, please contact:

Siemens Industry, Inc.
Drive Technologies — Motion Control (Machine Tool)
390 Kent Avenue
Elk Grove Village, IL 60007
Phone: 847-640-1595
Fax: 847-437-0784
Web: www.usa.siemens.com/cnc
Email: SiemensMTBUMarCom.industry@siemens.com
Attention: John Meyer, Manager, Marketing Communications

Others involved in this story may also be contacted:

Zimmermann Inc. — Portal Milling Machines
24371 Catherine Industrial Drive
Suite 233
Novi, MI 48375
Phone: 248-305-9707
Web: www.zimmermann-inc.com
Email: matthias@zimmermann-in.com
Attention: Matthias Tockook, President

Triumph Structures – Wichita
3258 S. Hoover Rd.
Wichita, KS 67215
Phone: 316-942-0432
Web: www.triumphgroup.com
Email: hthurmond@triumphgroup.com
Harry Thurmond, President

Continue reading

Voith Hydro Achieving Improved Production of Power Generation Equipment Through Standardization of Machine Tool Controls

Large parts and one-off runs present particular challenges; common CNC platform offers many benefits to busy York, PA shop

Despite the large, heavy workpieces and frequent one-off production, Voith Hydro maintains a steady flow of work for its machining, typically holding +/- 0.002” tolerances on various carbon and stainless steels. Workpieces here often exceed 25’ in diameter.

Despite the large, heavy workpieces and frequent one-off production, Voith Hydro maintains a steady flow of work for its machining, typically holding +/- 0.002” tolerances on various carbon and stainless steels. Workpieces here often exceed 25’ in diameter.

Voith Hydro in York, Pennsylvania is a major manufacturer of hydroelectric power generation equipment, especially the intricate turbines used in such operations, supplying hydroelectric generating companies and municipalities throughout North America. Over 12,000 units have been commissioned in the field with more than 65,000 MW of installed capacity, plus Voith Hydro has also upgraded over 600 existing power generation units. As a turnkey supplier to the industry, the company manages all phases of power plant projects, from analysis and planning, design and implementation, to commissioning and operation. Voith Hydro is ISO 9001 and ISO 14001 Certified.

Milling, line boring and turning operations are performed on large multi-axis machine tools, most equipped with Siemens SINUMERIK 840D CNC onboard to control all axes of motion.

Milling, line boring and turning operations are performed on large multi-axis machine tools, most equipped with Siemens SINUMERIK 840D CNC onboard to control all axes of motion.

At the York facility, very large multi-axis machining centers produce carbon and stainless steel work pieces, most often in a one-off mode and at sizes frequently exceeding 35’ in diameter. Adam Ward, the manager of maintenance & facilities at Voith Hydro, says the machining done typically holds +/- 0.002” tolerances here, nonetheless. “We do turning, line boring and milling on extremely large and heavy work pieces that often challenge us to design the optimum machining cycle. Our long cycles can frequently result in heat distortion on material surfaces and so we take great care in looking for problems before they occur.”

Voith Hydro maintains an impressive array of machine tools and multi-axis machining centers here. Despite a variety of builder brands, the majority of the machines have one common component, namely, the Siemens SINUMERIK 840D CNC onboard.

Remote condition monitoring is performed between Voith Hydro and many of its machine tool builders to troubleshoot and resolve issues in real time, using the CNC on the machine.

Remote condition monitoring is performed between Voith Hydro and many of its machine tool builders to troubleshoot and resolve issues in real time, using the CNC on the machine.

As Ward notes, “Our operators are quite comfortable with the CNC from Siemens and they use it for all motion control, plus the operator interface has the ability to afford us great troubleshooting capability and something else we value greatly, the commonality of the HMI on the control. That fact allows us to do a great deal of cross-training and that’s very important to us. We need to be highly flexible, given the one-off nature of our work here.” Most of the operators at Voith Hydro are capable of running multiple machines, while the maintenance personnel on his team can more easily service the machining equipment in the facility, adds Ward. He credits his machine builders and the Siemens team led by Howard Weinstein and Robert Stiefel for this ongoing flexibility.

Part designs are run through the company’s CAM system and simulated offline to preserve machine uptime.

Part designs are run through the company’s CAM system and simulated offline to preserve machine uptime.

Voith typically takes a customer design, runs it through their CAM system and simulates the cycle offline, in order to preserve valuable machine uptime. Since the work here involves highly complex geometries on the turbine sections, the simulation must be equally complex and account for all machine motions and collision avoidance. Once the program is finally determined for a part, it is fed over the Voith Hydro network to the appropriate machine tool or machining center for scheduling and production startup.

During production, a system of real-time remote condition monitoring is available through the CNC for troubleshooting by both the Voith Hydro maintenance personnel and, when required, machine builder personnel, working offsite.

Large Ingersoll milling machine was retrofit recently, with all new Siemens CNC, motors, drives and other hardware.

Large Ingersoll milling machine was retrofit recently, with all new Siemens CNC, motors, drives and other hardware.

Ward cites one example where an Ingersoll milling machine was completely retrofitted both mechanically and electrically by a Siemens Solution Partner, with a new CNC, motors, drives, encoders, other hardware and software. “Working with the builder and Siemens support personnel, we were able to resolve issues and implement changes to the programming, right on the CNC of the machine…and all done remotely, in a very short time period.”

Voith Hydro in York, PA produces a wide variety of power generation components for various machine builders and municipalities across America.

Voith Hydro in York, PA produces a wide variety of power generation components for various machine builders and municipalities across America.

Voith Hydro boasts machining capabilities on workpieces over 42’ diameter and 350 tons at the York facility. Surface finishes are typically 250 and 125 Ra, though occasionally 64 or 32 Ra is required. The finishes are achieved through both machining and secondary finishing operations, according to company sources.

Adam Ward further notes that, on most new machines required at Voith Hydro, “The cross-training capability of the CNC, the standardization of the HMI on various types of machines, the support provided and the previous successes our operators and maintenance personnel have realized, all combine to make specifying Siemens as our control of choice an easy decision.”

Howard Weinstein, business development manager for the power industry manufacturing sector at Siemens, comments on the relationship with Voith, “We’re a proud partner to Voith Hydro in York, Pennsylvania. Their facility is a great showcase for our flagship CNC, the SINUMERIK 840D, as used on an array of multi-axis machining centers to produce large, complex geometry parts for the hydroelectric power industry.”

For more information on this story, please contact:

SIEMENS INDUSTRY, INC.
DRIVE TECHNOLOGIES –  MOTION CONTROL (MACHINE TOOL BUSINESS)
390 Kent Avenue
Elk Grove Village, IL 60007
Phone: 847-640-1595
Fax: 847-437-0784
Web:  www.usa.siemens.com/cnc
Email:  SiemensMTBUMarCom.sea@siemens.com
Attention:  John Meyer, Manager, Marketing Communication

Follow us on Facebook: www.facebook.com/SiemensCNC or Twitter:  www.twitter.com/siemens_cnc_us.

Others involved in this story may also be contacted:

Voith Hydro
760 East Berlin Road
York, PA 17408-8701
Phone:  717-792-7512
Web:  www.voith.com
Email:  adam.ward@voith.com
Adam Ward, Manager of Maintenance & Facilities

Continue reading

Machining Takes Center Stage

Sinumerik CNC ensures high-quality guitar craftsmanship

Fryer Machine Systems supplies an American guitar builder with milling machines for the production of high-quality guitars. Right-angle head compensation is essential to the accurate, repeatable milling of guitar necks — an easy task for the Sinumerik 840D CNC on board Fryer machines.

The challenge of repeatable product performance is not new to C.F. Martin & Company. Six generations ago, company founder C. F. Martin Sr. was confronted with managing a guitar-making enterprise that was producing totally handcrafted guitars, one by one, with little means for standardization. Since those days, guitar legends such as Gene Autry, Eric Clapton, John Mayer and new-comers Ed Sheeran and Hunter Hayes have relied on ­the consistently distinctive tone, treble and bass specific to Martin acoustic guitars. When Martin learned that its previous machine tool builder had exited the market, the company turned to Fryer Machine Systems for new machines to cover a production increase and seized the opportunity to upgrade the control technology with Sinumerik CNCs.

Larry Fryer (left) and Mark Bickert from Martin Guitar are satisfied with Siemens CNC technology, service and part quality.

Larry Fryer (left) and Mark Bickert from Martin Guitar are satisfied with Siemens CNC technology, service and part quality.

Hands-on support in customizing the CNC

“We use right-angle head aggregates in our CNCs,” explains Mark Bickert, engineering project manager at Martin. “We needed to find a machine builder that could give us right-angle head aggregate capability in conjunction with right-angle head compensation and a high-rpm spindle.” Fryer Machine Systems has earned a reputation for building reliable production machines that come with unexpectedly advanced features and functionality. The company happens to be the largest purchaser of Siemens controls in the United States, and the customizable aspects of a Fryer machine can often be attributed to the versatility of the Siemens controls on board. This time, however, Martin needed to be certain that the new Fryer machines would perform as expected.

“Anyone can sell you a machine with a controller on it and say, ‘Here you go,’” Bickert says. “But that’s not what happened this time. We were buying a machine through a Fryer dealership, and the machine had a Siemens control. Siemens invested their time in us during our transition and set-up. They really excelled.”

Bickert says a potential constraint to the transition was that all-new milling programs might need to be written for the Fryer machines, including the right-angle head cutter compensation programs, which were essential. “Siemens not only gave us the right-angle head cutter compensation we wanted and the ability to do it properly, they also helped write the programs,” Bickert says. “They took the programs that we already had for cutting parts on our existing machines and reconfigured them to work in the Fryer machine with the Siemens controller.”

Guitar body castings now also machined in-house

Having made a smooth transition to the company’s new Fryer-built machines last year, Martin has not skipped a beat in its ability to perform right-angle compensation milling. Martin now has eight Fryer/Siemens machines, utilizing one for the guitar maker’s tooling and machinery operations and seven for various other guitar production operations. It is here, behind the scenes, that the company’s machinists reside and modern CNC technology and Old World craftsmanship come together to create the fixtures, tools and wherewithal that contribute to the mastery of Martin guitar making. It is also here that ­Martin found a way to bring previously outsourced operations in-house, a step that has improved repeatable production quality while reducing production costs. “The machining of our castings had been another hurdle for us,” says Terry Kline, Martin’s manager of tooling and machinery. Until the company invested in the Fryer machines with the Siemens controls, Martin had outsourced the machining of its guitar body castings, with inconsistent results. “Now we’re holding close tolerances on our guitar body castings,” Kline says. “The quality of the castings is consistently accurate.”

CNC technology meets craftsmanship

On a daily basis at Martin, Kline sees what is possible when CNC technology and craftsmanship work together. “Without CNC technology, we’d be still carving out all our necks by hand, and that’s just not efficient enough to compete in today’s world,” he says. The intersection of technology and craftsmanship has come naturally for this 180-year-old guitar company, without one side compromising the other. “I think every manufacturing company needs to ­embrace technology,” says Kline. “Technology and craftsmanship go hand-in-hand. People are amazed by how much handwork still goes into our guitars. We’ll build a neck and a body and then assemble the two elements together, which makes that guitar come to life.”

Right-angle head compensation is essential to the accurate milling of guitar neck components. The function requires the sophisticated Sinumerik 840D sl CNC and ShopMill software from Siemens. Guitar image courtesy of C.F. Martin & Company.

For more information on this story, please contact:

SIEMENS INDUSTRY, INC.
DRIVE TECHNOLOGIES – MOTION CONTROL (MACHINE TOOL BUSINESS)
390 Kent Avenue
Elk Grove Village, IL 60007
Phone: 847-640-1595
Fax: 847-437-0784
Web: www.usa.siemens.com/cnc
Email: SiemensMTBUMarCom.sea@siemens.com
Attention: John Meyer, Manager, Marketing Communication

Follow us on Facebook: www.facebook.com/SiemensCNC or Twitter: www.twitter.com/siemens_cnc_us.

Siemens Industry Sector is the world’s leading supplier of innovative and environmentally friendly products, solutions and services for industrial customers. With end-to-end automation technology and industrial software, solid vertical-market expertise, and technology-based services, the sector enhances its customers’ productivity, efficiency and flexibility. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Industry Automation, Drive Technologies and Customer Services Divisions as well as the Metals Technologies Business Unit. For more information, visit http://www.usa.siemens.com/industry.

The Siemens Drive Technologies Division is the world’s leading supplier of products, systems, applications, solutions and services for the entire drive train, with electrical and mechanical components. Drive Technologies serves all vertical markets in the production and process industries as well as the infrastructure/energy segment. With its products and solutions, the division enables its customers to achieve productivity, energy efficiency and reliability. For more information, visit http://www.usa.siemens.com/drivetechnologies.

Continue reading

Model Turbines 
from One Mold

Energy production specialist MCE uses a simultaneous 
five-axis mill-turn center with Sinumerik 840D sl 
for producing model running wheels in one setting and thereby reducing throughput time.

MCE Maschinen- und Apparatebau GmbH CEO 
Gottfried Langthaler (right) and Buz Bozner, head of the Alzmetall Technology Center, agree: The efficiency of the Sinumerik 840D sl makes an important contribution to enabling simultaneous milling and turning in every position with the GS 1000/5-FTD.

MCE Maschinen- und Apparatebau GmbH CEO 
Gottfried Langthaler (right) and Buz Bozner, head of the Alzmetall Technology Center, agree: The efficiency of the Sinumerik 840D sl makes an important contribution to enabling simultaneous milling and turning in every position with the GS 1000/5-FTD.

MCE Maschinen- und Apparatebau GmbH 
in Linz, Austria, produces various components for large gas, steam, and water turbines, as well as for wind power stations and other segments of energy production. But before the company receives any orders for these products, realistic models must prove their efficiency, underlines MCE CEO Gottfried Langthaler: “It is therefore very important for us to be able to manufacture 
the turbine models in high quality and, at the same time, productively with a short throughput time.”

In mid-2010, the running wheels were still being milled individually on a five-axis machining center 
and then bolted or welded together. The average throughput time was six weeks. Thanks to a few technical tricks and the Sinumerik-controlled GS 1000/5-FTD from Alzmetall, which has been used 
in model production since the end of 2010, the machining expert Langthaler was able to reduce throughput time by up to one-third — to about four weeks, depending on the product. As a qualified master of mechanical engineering and design, 
he already knew before purchasing the Alzmetall machine that it would be ideal for his model production if a Francis turbine could be produced from solid brass: “I was merely skeptical that a machining center could do that. After all, we have to achieve 
a high roughing cut and smooth with maximum 
precision and surface quality.” Initial tests with the GS 1000/5-FTD revealed that the technical conditions were right. Langthaler adds: “Alzmetall 
also flexibly adapted the machining center to our needs so that we can meet 
all the requirements regarding accuracy and surface quality — 
in one setting if necessary.”

B02b_Siemens_MCE-Alzmetall copy

User-friendly CNC for milling 
and turning jobs

Because this machine must also perform turning tasks, in addition to milling tasks, at MCE, this requirement is also in the specification and is met 
by the GS 1000/5-FTD. Buz Bozner, head of the 
Technology Center at Alzmetall, explains the technical basis: “We integrated torque motors in all round axes. We therefore achieve speeds of 300 rpm in 
the c-axis.” The mill-turn center offers an enormous machining space that not even standard lathes achieve. Parts with a diameter of up to 1,000 mm can therefore be machined. A highlight of the 
GS 1000/5-FTD is that it can be turned to any round axis position and level.

The energy professionals in model construction 
have been relying on Sinumerik controllers since the mid-1990s because, according to the mechanical engineering boss Langthaler, these were always 
convincing, especially in complex five-axis machining: “The handling of Sinumerik 840D is also clear and simple on the ShopMill and ShopTurn graphical user interfaces.” The operator 
can work particularly easily and clearly when a GS 1000/5-FTD with the new Sinumerik Operate user interface 
is used. Operation and programming always have 
the same structure, regardless of whether milling or turning processes are to be programmed and set-up. The operator is also supported by graphical displays and animations. Many intelligent functions are available, which are helpful, among other things, for tool and workpiece measurement. The operation and programming of 3+2 axis machining is also supported by the integrated Cycle800 functions. Animated 
Elements simplify the explanation of functions such as selection of the direction and free running, as well as swiveling.

Another highlight of the new GS 1000/5-FTD is the Sinumerik MDynamics technology package, which 
is especially important for complex five-axis machining. Maximum surface quality and exact contour accuracy can be achieved even more rapidly. The 
key is in the new Advanced Surface intelligent path control, which contains an optimized look-ahead function and an optimized online CNC data compressor, among other things. The integrated intelligent jolt limiter relieves stress on the machine mechanics because it enables gentle acceleration and deceleration despite extreme dynamic response.

B03a_Siemens_MCE_Alzmetal_1910

Customers reap the benefits

As a specialist in single-part and small-series production for small to large workpieces, MCE is equipped to meet even extraordinary demands on-time and with top quality. By equipping its machines with state-of-the-art Siemens technology, the company 
is able to achieve high throughput times in model production and pass these advantages on to its -customers.

For more information on this story, please contact:

SIEMENS INDUSTRY, INC.
DRIVE TECHNOLOGIES –  MOTION CONTROL (MACHINE TOOL BUSINESS)
390 Kent Avenue
Elk Grove Village, IL 60007
Phone: 847-640-1595
Fax: 847-437-0784
Web:  www.usa.siemens.com/cnc
Email:  SiemensMTBUMarCom.sea@siemens.com
Attention:  John Meyer, Manager, Marketing Communication

Follow us on Facebook: www.facebook.com/SiemensCNC or Twitter:  www.twitter.com/siemens_cnc_us.

Siemens Industry Sector is the world’s leading supplier of innovative and environmentally friendly products, solutions and services for industrial customers. With end-to-end automation technology and industrial software, solid vertical-market expertise, and technology-based services, the sector enhances its customers’ productivity, efficiency and flexibility. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Industry Automation, Drive Technologies and Customer Services Divisions as well as the Metals Technologies Business Unit. For more information, visit http://www.usa.siemens.com/industry.

The Siemens Drive Technologies Division is the world’s leading supplier of products, systems, applications, solutions and services for the entire drive train, with electrical and mechanical components. Drive Technologies serves all vertical markets in the production and process industries as well as the infrastructure/energy segment. With its products and solutions, the division enables its customers to achieve productivity, energy efficiency and reliability. For more information, visit http://www.usa.siemens.com/drivetechnologies.

Continue reading

The Five-Year Plan That Worked

Smiths Machine answered the recession with a formula for major change

So what’s the secret to their success?

To begin with, the omission of the apostrophe from the company’s name was deliberate. Being different is in the DNA of Smiths Machine. This is a second-generation, family-owned business that found a way to grow its workforce by 70 people during the last five years That’s a 300% employment surge that mostly happened during the recession, a time when many machine shops (and for that matter, many businesses), were struggling just to hang on.

Ahead of the recession, Smiths Machine did what many machine shops were doing at the time. They were riding the wave of automotive parts production and doing seemingly fine, until the massive downturn came. The bankruptcies of the tier one automotive companies suddenly left many machine shops vulnerable to volume-based supply from overseas competition; and a once well-oiled machine tool business model now seemed unstable and uncertain. Equally uncertain was the idea of moving the business in an entirely different direction.

Manufacturing complex parts for the aerospace and defense industry, demands consistency, high-quality and precision — achieved only with Siemens CNC.

Manufacturing complex parts for the aerospace and defense industry, demands consistency, high-quality and precision — achieved only with Siemens CNC.

To be or not to be — different

Defense and aerospace part manufacturing require a different business approach altogether, says Tim Smith, vice president of Smiths Machine.

“It is specialized work that requires special approvals, log-down processes and complicated procedures,” Smith says. “The complexity is challenging. And it all starts with a different way of thinking, more of an engineering approach than a production approach.”

Smith says his company needed to build a new business model and the operations to support it. The defense and aerospace machining market is characterized by small lot counts, generally lower margins, and a very low tolerance for errors. Scrap rates thought to be nominal in the past would now be out of the question.

“You can’t make a $6,000 part and have a 30% scrap rate or even a 10% scrap rate,” explains Smith. “The emphasis is not on throughput, but on the high quality, highly precise manufacturing of very complex parts.”

Based on these three inseparable machining requirements — quality, precision and complexity — Smiths Machine set out to reach its greater potential in the machine tool market, not as a production machine shop, but as company focused on complex part manufacturing. Having achieved some early success in this new direction, the way forward for the company soon could be summed up more simply:

“The more complex the part, the more competitive we are,” says Smith.

To protect and grow this competitive advantage, the company’s leadership knew that their internal processes and technology needed to match up with the unique requirements of the defense and aerospace industries. Major investments in large, complex, five-axis machines would need to be enhanced by equally complex control capabilities. Smith recounts how a decision made previously by the company would now come into play in a profound way.

A backbone for change

Traditionally a milling and turning company, Smiths Machine first teamed up with DMG and Siemens in the year 2000 to establish their singular machine tool platform. This brought about a synergistic approach to complex milling and turning; an advantage that took on greater significance when the company decided to focus on the defense and aerospace markets later in the decade.

“Siemens controls were available on DMG milling and turning machines, and that was a natural fit for us,” Smith recalls. The DMG / Siemens platform has enabled Smiths Machine to establish and maintain a high level of operational proficiency. The central advantage here, Smith says, has been the ability to invest, train and keep his people moving forward based on a stable technology platform.

“The technology and the people using it are the backbone of our organization,” Smith asserts. “Even with 25 machines, we can share knowledge between the milling and the turning machines. The common control is a Siemens Sinumerik 840D sl. Our technology purchases are based on where we want to be in ten years, not on a workforce that is fractionally trained and a platform that can rapidly deteriorate due to a change in market condition or a change in employment condition.”

Smith says an example of this singular platform advantage is the control’s similarity across milling and turning operations. “All controls are customized to a certain extent,” Smith acknowledges. “But unlike Siemens, many other control series are individually customized so that the keyboard layout will be different from machine to machine. The Sinumerik 840D sl CNC is consistent. So when you train your operators, you can say, here’s the jog button, here’s the axes button, here’s your alarm button and your offset button. And this level of consistency extends to a graphical interface that really complements how we teach and learn.”

Teaching and learning are closely held values within an organization that uses a breadth of visual techniques to foster education, efficient information sharing, and quality control.

“We are a very visual company,” Smith says. “We use a lot of colors and we buy a lot of printer toner. Our parts inventory uses color-coded tags and the same is true across our production. We use yellows and blues and reds for consistent instruction. And the Siemens 840D sl control uses the same approach. You are guided visually for such things as axis direction, approach point, final depth and other variables inside a cycle. And this is true from control to control, for milling and turning.”

Smith says visually guided information flow is characteristic of today’s complex range of next-generation electronic communications, because this speeds understanding and information sharing. Whether for a smart phone or a CNC, graphically guided interfaces enable rapid learning and proficiency, a fact that has been well leveraged by the 840D control interface design.

Smiths Machine’s plan for stable growth started with its investment in a stable CNC platform: The steady progression of a stable machine / control platform has enabled the company’s similarly growing workforce to build on existing knowledge, rather than learn new and different versions every few years.

Smiths Machine’s plan for stable growth started with its investment in a stable CNC platform: The steady progression of a stable machine / control platform has enabled the company’s similarly growing workforce to build on existing knowledge, rather than learn new and different versions every few years.

New angles on programming

Gerhard Hetzler, engineering manager at Smiths Machine, has experienced firsthand how the company’s singular platform approach has brought continuity to such manufacturing functions as post, machine simulation, NC code, and control functionality.

While the Siemens 840D sl control has evolved in significant ways over the years, Hetzler says these changes have served only to accelerate the performance of the programmers and operators, rather than impede them with new and different procedures. The control platform has also given Smiths Machine the freedom to create custom cycles that can be copied and shared from control-to-control, and so machine-to-machine.

“I’ll give you an example,” says Hetzler. “To catch occasional entry errors on the tool management side, we created a cycle that checks the length of the tool and within a specific tolerance. So within in a matter of milliseconds, the control compares that value to what was entered in the tool management side, and if the tolerance is exceeded by 2mm, the control immediately stops the machine.”

Hetzler says another advantage resulting out of the DMG and Siemens relationship is the continued simplification of complex cutting operations, especially in the area of angular milling heads.

CS_SmithsMachine-2

“Siemens has come a very long way to improve the cycles and support related to milling heads,” Hetzler says. “Aerospace requires a lot more use of angular milling. Even a five-axis approach can’t do it. You need an angular milling head. I would put this on the top of my list of the advantages DMG and Siemens have developed. And this relates to another important development, Siemens NX.”

NX as in next

Siemens NX software integrates CAD, CAE and CAM for faster part manufacturing, encompassing all areas of tooling, machining and quality inspection. NX has become integral to Smiths Machine’s CNC platform, because it supports part planning through manufacturing, with the prevention of errors and related costs.

“Our ability to develop all of our own post-processors in house is supported by Siemens NX,” Hetzler explains. “We setup our angular milling heads in NX, so we can post the G-code before we even send it out to the machine.”

An early introduction to the power of NX came when the company found that it needed to write code to produce an especially challenging aerospace landing gear. The code took six-weeks to manually program. This was before the company learned that it could do the same task in nine days using NX.

“Siemens knows five-axis machining and NX is a Siemens product that leverages five-axis,” Hetzler says. “As an example, we can do three-plus-two axes work in NX. There is a cycle for that called Cycle 800. So when NX outputs the NC code, the machine then also understands it. Other control brands will have a cycle that can be made to work, but they are a lot more problematic. We are talking about managing the change of plane, a concept that has been around for a long time and was always problematic to do. Now Cycle 800 in NX does it all for you.”

Hetzler says Cycle 800 makes programming the change of plane easier, faster, and with higher accuracy than traditionally calculated methods. “We would normally round off after the third or fourth decimal,” he recalls. “Now the control calculates to nine decimals. When you start talking microns, especially in the aerospace industry, it makes a huge difference. And this difference has been fully implemented by DMG. They have invested a lot of time and money to make sure from their side that Siemens NX and Cycle 800 work 100% of the time.”

The Cycle 800 function within Siemens NX supports the programming of 2-1/2 axis and 3D milling throughout the rotation of all X-Y-Z planes, while maintaining a zero offset. Functions include automatic shifting of zero offset, tool length and radius compensation in rotated planes, compensation of machine geometry, and all machining cycles can be used.

The Cycle 800 function within Siemens NX supports the programming of 2-1/2 axis and 3D milling throughout the rotation of all X-Y-Z planes, while maintaining a zero offset. Functions include automatic shifting of zero offset, tool length and radius compensation in rotated planes, compensation of machine geometry, and all machining cycles can be used.

CS_SmithsMachine-3a

 

Please forward all inquiries to:

SIEMENS INDUSTRY, INC.
DRIVE TECHNOLOGIES
MOTION CONTROL
MACHINE TOOL BUSINESS
390 Kent Avenue
Elk Grove Village, IL 60007
Phone: 847-640-1595
Fax: 847-437-0784
Web:  www.usa.siemens.com/cnc4you
Email:  SiemensMTBUMarCom.sea@siemens.com
Attention:  John Meyer, Manager, Marketing Communication

Follow us on Facebook: www.facebook.com/SiemensCNC or Twitter:  www.twitter.com/siemens_cnc_us.

Siemens Industry Sector is the world’s leading supplier of innovative and environmentally friendly products, solutions and services for industrial customers. With end-to-end automation technology and industrial software, solid vertical-market expertise, and technology-based services, the sector enhances its customers’ productivity, efficiency and flexibility. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Industry Automation, Drive Technologies and Customer Services Divisions as well as the Metals Technologies Business Unit. For more information, visit http://www.usa.siemens.com/industry.

The Siemens Drive Technologies Division is the world’s leading supplier of products, systems, applications, solutions and services for the entire drive train, with electrical and mechanical components. Drive Technologies serves all vertical markets in the production and process industries as well as the infrastructure/energy segment. With its products and solutions, the division enables its customers to achieve productivity, energy efficiency and reliability. For more information, visit http://www.usa.siemens.com/drivetechnologies.

Continue reading

Retrofitting for success

Major Tool & Machine, Inc. retrofitted two of their machining centers in 2010 changing to a CNC technology platform that was completely new to the company. Ten more such large-scale retrofits have followed, bringing increased enthusiasm, momentum and productivity.

Major Tool & Machine has been on track to retrofit over a dozen of its giant milling and turning machines within just two years, all supported by a new Siemens CNC platform. MTM’s management says the process has been an empowering experience for the company.

Major Tool & Machine has been on track to retrofit over a dozen of its giant milling and turning machines within just two years, all supported by a new Siemens CNC platform. MTM’s management says the process has been an empowering experience for the company.

CNC upgrade enhances performance and precision

Major Tool & Machine (MTM) is a large job shop, producing precision milled and turned hardware throughout the company’s 500,000 square foot Indiana facility. Performance is essential, because MTM contracts with aerospace, energy, nuclear and defense companies on many mission-critical, one-off projects. Owner and CEO Steve Weyreter will tell you openly, MTM is more competitive by way of a significant CNC technology change, starting with an aggressive retrofit strategy.

Günther Zimmermann, CNC Controls Engineer at MTM, says the company’s retrofit program and the decision to change to the Siemens SINUMERIK CNC platform have brought a new enthusiasm and momentum to the company. Over the last two years the change has also brought significant time and cost reductions, especially in the areas of programming, maintenance engineering, and machine operations.

“The initial goal in early 2010 was to retrofit two Cincinnati U5 Gantry machines,” Zimmermann recounts. “We evaluated two CNC technology platforms and after considerable analysis our CEO Steve Weyreter announced that Siemens would best support the company’s future.”

The decision to reduce costs by moving to a single CNC platform was the least difficult decision for the company to make, Zimmermann explains. The larger challenge for MTM was the integration of a new CNC technology platform that was new to the company.

Bill Henderson, MTM’s manager of large machining and maintenance, agrees that the decision to change to a Siemens CNC platform integrated with advanced part and tool probing was critical, because the shop manages constant changeovers from one complex job to the next, making setup times a critical time/cost constraint for the company. Another big advantage is the increased flexibility by only having to train machinists and maintenance personnel on one type of control.

Henderson went on to say “the decision to change to a new control has signaled higher expectations for the company, along with new challenges for those who program, operate and maintain the company’s big machines.

Naturally, there’s a resistance to change,” Henderson says. “People are comfortable with what they normally run, but after our discussions with the people on the plant floor, they understood the overall objective. Our retrofit program is not finished, yet it’s already showing tremendous benefits.”

An advantage MTM gained by its retrofit strategy has been the ability to interchange heads and rotary tables from machine to machine. Easy-to- use head storage and tool management programming provided by the Siemens CNC platform support the new interchange capability.

An advantage MTM gained by its retrofit strategy has been the ability to interchange heads and rotary tables from machine to machine. Easy-to- use head storage and tool management programming provided by the Siemens CNC platform support the new interchange capability.

Retrofitter Doug Huber says having Siemens as a new CNC technology partner has made a difference for Major Tool & Machine, but it’s also been an evolutionary uplift for his own retrofitting company, Indiana Automation.

“Indiana Automation has increasingly retrofit using Siemens controls in recent years, Huber explains. “On a retrofit, we always try to exceed what the original machine could do, and that’s just kind of inherent when you put on a Siemens 840D. Major Tool’s first retrofits were the Cincinnati U5 machines, a bridge model and two gantry models. These are five-axis machines and five-axis is the 840D’s forte. The processing power of the control is so much better, that it just whips through the blocks faster. So right off, cycle time is a major performance enhancement.”

Huber says something else happened this time. As his firm finished retrofitting the first three giant machines with Siemens five-axis controls, drives and motors, the reaction within the company was not just that the machines were now predictably more efficient, but that they performed as very different machines. A new advantage is the ability to interchange machining heads from machine-to-machine, and all driven by the Siemens CNC platform.

Central to MTM’s retrofit program has been the Siemens SINUMERIK 840D sl control, which features the SINUMERIK Operate interface. The highly intuitive interface enables both programmers and operators to easily capitalize on the broad capabilities of the control.

Central to MTM’s retrofit program has been the Siemens SINUMERIK 840D sl control, which features the SINUMERIK Operate interface. The highly intuitive interface enables both programmers and operators to easily capitalize on the broad capabilities of the control.

“On many of the U5 machines, the axes come off with the heads,” Huber explains, “and we rebuilt these machines to accept any one of three different heads. That’s one of Major Tool’s key strategies. They insist on having flexible machine capabilities, so that they can run all kinds of different parts. They have straight heads for serious metal cutting, contour heads for five-axis work and finesse work. They have 90-degree heads for more flexibility than a straight head, but it’s also not as fragile as the contour head. And they wanted to interchange all of these heads to automatically go pick up a head out of the shuttle and, on the fly, reconfigure the axes and the zero positions. To do this, the compensation tables all had to be updated. Everything needed to be done with the macro program so that each head came on ready to run.”

The interchangeable head strategy was a challenge, Huber says, because the machines were not originally capable of sharing heads. But with support from Siemens, the strategy has worked, including the ability to interchange rotary tables as well as heads. “Each head or rotary table has a configuration file that has all the settings and compensations and travels with it from machine to machine. So now when you mount that head the control just runs the configuration file that goes with it and its all set up for you. We also incorporated Siemens Tool Management for each machine’s 60-pocket tool chain. We used the feature on these machines to manage all the different tooling MTM uses, both in the automatic tool changer as well as the ones manually loaded.”

Huber says, “MTM’s ability to smoothly transition to more advanced CNC is largely due to the HMI’s ease of use. The Operate interface is a huge help to us and to Major Tool. The HMI helps make better parts. And it didn’t take very long for the operators to fall in love with it.”

Programming as easy as 1-2-3: Using the SINUMERIK Operate interface, a machinist can turn on coolant flow by 1) pressing Cycle Stop to stop the machine, 2) Coolant On, and 3) Restart.

Programming as easy as 1-2-3: Using the SINUMERIK Operate interface, a machinist can turn on coolant flow by 1) pressing Cycle Stop to stop the machine, 2) Coolant On, and 3) Restart.

“I had never used a Siemens control before,” admits MTM machinist Mike Burthay. “I have extensive knowledge of G-code and CNC controls and I would say the Siemens 840D sl with the Operate interface is the easiest one I’ve ever run. It’s user friendly, that’s exactly the words for it.”

Burthay reports several ways in which the Siemens SINUMERIK Operate interface has made his life easier. “There’s not as much G-code,” he says. “The control does it all for you as long as you put in the parameters as to size, length, width. Then once you’re in Job Mode, there’s a screen where you can tool change or jog the machine around to certain positions, or turn the spindle on, turn the coolant on, anything that traditionally required G-code. So now you can push a cycle stop button to pause the machine, enter a change such as turning coolant on, then restart the program.

“Another function I love is Block Search, which allows me to start or restart right in the middle of a program. Say you’re finishing a pocket and you have to run the tool two or three times to get a tight tolerance, I can enter in a line number and hit Block Search, the control picks up every line before that, restarts the spindle and everything for you.”

Burthay says the Siemens control also enables him to program parts right on the machine whenever necessary, using a simple yet robust program called ShopMill. “I can go into ShopMill, type in some parameters and it will kick out that G-code program for me automatically. Say I want to drill a hole two inches deep. I open ShopMill, pick my tool, tell it the depth and these steps are all interactive on the screen. It even shows me 3D motion images of the tool path, confirms the drill going down as expected into the part. So I hit go and it puts a drill cycle into the program for me.”

Programmed for collaborative growth

Lead Programmer, Tim Hayden, has from the beginning conducted all processor setups for the newly retrofitted machines. Hayden says integrating the Siemens CNC platform has been an empowering experience he had not expected, given the fact that he had never before set up a post processor to run a Siemens control, nor had he ever before operated a Siemens control.

“Now, when I look at the Siemens control, I think man, it would have been so much better to have had it all along,” Hayden says, “because the other control I’ve been using is just a lot more cryptic. The Siemens control with the SINUMERIK Operate interface is more powerful for writing macros and the language seems modern, whereas the other control seems like it is still based on an old FORTRAN type language.”

Work offsets for compound angles can be scaled and rotated using the Frames function of the Siemens SINUMERIK Operate interface. Many advanced machining operations can be managed simply, without the use of time-intensive manual G-code programming.

Work offsets for compound angles can be scaled and rotated using the Frames function of the Siemens SINUMERIK Operate interface. Many advanced machining operations can be managed simply, without the use of time-intensive manual G-code programming.

Hayden points to the Frames coordinate and offset programming function of the Siemens interface as an example of improved programming convenience.

“We do a lot of work on compound angles,” Hayden explains, “and with the Siemens Frames function, you can scale and rotate your coordinate system on the control, just plug it in with your work offsets. Whereas, on the other control you will see a G54 request, you’ve got to enter G-code. You can’t just plug it into your work offsets like you can with the Siemens control.”

Hayden says the SINUMERIK Operate interface brings greater programming flexibility. The HMI enables him to enter G-code using a comparatively more advanced manual data entry (MDI) function; however the HMI has all but eliminated the need for G-code entry by way of its intuitive design and evolved capabilities.

Another example of such HMI evolution is in the area of data management.

“When we post a program, we no longer have to use a G-code based MDI,” Hayden explains. “We no longer need to type in T= and enter a nine digit number and then enter M6 to make a tool change. With the Operate HMI, you pick your tool off a screen and hit cycle start. It’s just as easy to program going to a position. Instead of doing things the old way by typing G0X0Y0Z0 into the MDI, you open the Operate interface, click position, then click how you want to wrap it and then you just type the numbers into those fields. So it’s a lot more user friendly.”

Hayden says the Siemens CNC platform has supported greater collaboration at MTM between him and the machinists, and this is helping the company find ways to increase performance and efficiency. He agrees with his coworkers’ assessments that shorter setup times and greater operator freedom are making a significant difference.

“One of our production bottlenecks has been programming,” Hayden says. “The machinists that run our machines are professionals, they’re not button pushers, and with the SINUMERIK Operate interface, we can now rely on them to control and program certain parts right on their machines, while we programmers work on the more complex projects.”

“Siemens was the best fit for all of us,” Hayden concludes. “Siemens CNC is set up as an open control, and with that kind of flexibility, it seems anything is possible.”

For more information on Siemens SINUMERIK CNC, visit www.usa.siemens.com/cnc.

For specific product information and inquiries, call (800) 879-8079 ext. Marketing Communications or send an e-mail to: SiemensMTBUMarCom.industry@siemens.com.

Follow us on Facebook: www.facebook.com/SiemensCNC or Twitter: www.twitter.com/siemens_cnc_us.

Siemens Industry Sector is the world’s leading supplier of innovative and environmentally friendly products, solutions and services for industrial customers. With end-to-end automation technology and industrial software, solid vertical-market expertise, and technology-based services, the sector enhances its customers’ productivity, efficiency and flexibility. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Industry Automation, Drive Technologies and Customer Services Divisions as well as the Metals Technologies Business Unit. For more information, visit http://www.usa.siemens.com/industry.

The Siemens Drive Technologies Division is the world’s leading supplier of products, systems, applications, solutions and services for the entire drive train, with electrical and mechanical components. Drive Technologies serves all vertical markets in the production and process industries as well as the infrastructure/energy segment. With its products and solutions, the division enables its customers to achieve productivity, energy efficiency and reliability. For more information, visit http://www.usa.siemens.com/drivetechnologies.

Continue reading

Easy CNC – the easy-to-use app from Siemens

siemens_easy_cnc_app

Now for iOS and Android!

You asked and we listened.  Our popular Easy CNC app is now available for Android devices.  Easy CNC contains all the current training manuals for Siemens Sinumerik CNCs and will ensure that you always have the latest updates.

With no more heavy manuals to carry, you have access to over 4,000 pages of vital CNC instruction and content.  In addition, a handy G-code compatibility tool lets you quickly find compatible codes for Siemens and ISO G-codes.  The glossary feature is your reference guide to CNC terminology, and web-links to service, support and CNC social media feeds open the door to our online user community.  Don’t wait – download the Easy CNC app for iPhone, iPad and Android devices for free.

To download Easy CNC to your mobile device, visit:  http://www.usa.siemens.com/cnc-apps

For specific product information and inquiries, call (800) 879-8079 ext. Marketing Communications or send an e-mail to: SiemensMTBUMarCom.industry@siemens.com.

Follow us on Social Media:
Twitter: www.twitter.com/siemens_cnc_us
Facebook: www.facebook.com/SiemensCNC

The Siemens Industry Sector is the world’s leading supplier of innovative and environmentally friendly automation and drive technology, industrial software and technology-based services. The Sector’s comprehensive portfolio covers the entire industrial value chain, from product design, engineering and production to services. Siemens enhances its customers’ productivity, efficiency, and flexibility in a wide variety of different industries. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Divisions Industry Automation, Drive Technologies and Customer Services as well as the Business Unit Metals Technologies.

Continue reading

CNC IT-Integration Software for Machine Tools To Include New Applications

Siemens has added new applications to its "Sinumerik Integrate for production" software  suite for networking machine tools with production-level IT systems.

Siemens has added new applications to its “Sinumerik Integrate for production” software
suite for networking machine tools with production-level IT systems.

  • New applications for “Sinumerik Integrate for production”
  • Improved networking of machine tools with production-level IT
  • Access MyData for reading and writing NC and PLC data
  • Manage MyMaintenance for effective maintenance management

Siemens has added new applications to its “Sinumerik Integrate for production” software suite for networking machine tools with production-level IT systems. The new release now includes Manage MyMaintenance (MMM), an effective maintenance-tasks management system, and Access MyData (AMD), a set of open interfaces that now allows direct access to machine and process data.

Access MyData offers an interface to access machine and process data of machine tools controlled by the Sinumerik 840D sl CNC. To allow data communication, the machine tool is directly connected to the Sinumerik Integrate server at the customer’s site.
AMD Basic is available free-of-charge and enables the direct reading and writing of NC and PLC data from the Integrate application server. Purchasing extensions to AMD Basic allows machine tool data to be processed and NC part programs transferred via a file transfer interface.

Manage MyMaintenance enables small and medium-sized companies to enter the world of maintenance management without any additional investment. MMM automatically instructs the user, as soon as a new maintenance date is scheduled for a machine. The time and tasks to be performed are presented in a clearly laid out list.
Self-explanatory color-coding indicates which measure is overdue and which has
not yet reached its deadline. A number of maintenance tasks can be defined and intervals specified. The software is easily installed via the Sinumerik Operate graphical user interface without any programming effort.

Background information:

The Sinumerik Integrate for production software suite includes applications for simple management of machine tools and part programs, transparent recording of machine states and production data, as well as the remote maintenance of machines installed
all over the world.

For specific product information and inquiries, call (800) 879-8079 ext. Marketing Communications or send an e-mail to: SiemensMTBUMarCom.industry@siemens.com.

Follow us on Social Media:
Twitter: www.twitter.com/siemens_cnc_us
Facebook: www.facebook.com/SiemensCNC

The Siemens Industry Sector is the world’s leading supplier of innovative and environmentally friendly automation and drive technology, industrial software and technology-based services. The Sector’s comprehensive portfolio covers the entire industrial value chain, from product design, engineering and production to services. Siemens enhances its customers’ productivity, efficiency, and flexibility in a wide variety of different industries. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Divisions Industry Automation, Drive Technologies and Customer Services as well as the Business Unit Metals Technologies.

Continue reading

New Generation of Operator Panels For High-End CNC Applications

The Sinumerik blackline panels from the Siemens are a new generation of operator panels  for the Sinumerik 840D sl CNC system and offer new options for machine tool operation.

The Sinumerik blackline panels from the Siemens are a new generation of operator panels
for the Sinumerik 840D sl CNC system and offer new options for machine tool operation.

  • Robust and durable capacitive touchscreen operator panels
  • 40% energy savings compared to conventional neon lamps
  • Liquid and dust resistant, ideal for harsh conditions

The Sinumerik blackline panels OP 015 black and OP 019 black are a new generation of operator panels for the Sinumerik 840D sl CNC system and offer new options for machine operation. The inductive sensor technology enables rapid interaction with the user interface even when the operator is wearing gloves. Similarly, it prevents incorrect entries, for example caused by the heel of the operator‘s hand.

The 19-inch display of the OP 019 black can show all the entries made in widescreen format at a glance. The OP 015 black also features an alphanumerical keypad on the right that can be operated via touch control. This feature means that the 15-inch display is not restricted by the superimposed keypad during data entry, which ensures clear and efficient operation. Both blackline panels also have an integrated glass panel on the front side and are designed with IP65 (OP 019 black) and IP66 (OP 015 black) degrees of protection. They are resistant to liquids and dust and can be operated even under harsh industrial conditions. An integrated key lock helps safeguard against operating errors. The operator panel can provide a basic machine display, with three or four channels showing up to 13 axes.

The blackline panels also feature durable LED background lighting, providing 40 percent energy-savings compared to conventional neon lamps.

In combination with the Sinumerik 840D sl control, for use on high-end milling, turning, grinding and laser cutting machine tools, the blackline panels can be used as an operating and programming station for aerospace composite machining, power generation and medical part manufacturing, in addition to tool- and mold-making, rotary indexing machines and in shopfloor manufacturing.

For specific product information and inquiries, call (800) 879-8079
ext. Marketing Communications or send an e-mail to: SiemensMTBUMarCom.industry@siemens.com

Follow us on Social Media:

Twitter:  www.twitter.com/siemens_cnc_us
Facebook: www.facebook.com/SiemensCNC

The Siemens Industry Sector is the world’s leading supplier of innovative and environmentally friendly automation and drive technology, industrial software and technology-based services. The Sector’s comprehensive portfolio covers the entire industrial value chain, from product design, engineering and production to services. Siemens enhances its customers’ productivity, efficiency, and flexibility in a wide variety of different industries. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Divisions Industry Automation, Drive Technologies and Customer Services as well as the Business Unit Metals Technologies.

Continue reading