(847) 934-4500

Contact us today:

Tag Archives: News Release

AME Billet Sawing System

amsaw-durabarAMSAW® high-speed, production saw machines are specifically designed to use carbide blades to improve the cutting speed of ferrous and non-ferrous material, bars or billets, rails, profiles, pipes and tubes. Standard design features include:

  • Highly compact, rigid design
  • Hardened spindle gears ground for minimum backlash
  • Special saw blade guide and dampening device for accurate cutting to stabilize the blade and prolong tool life
  • Low maintenance design
  • Dry operation – no coolant needed
  • Saw blade changeover in less than 3 minutes
  • Double and triple measurement strokes for extra length cuts
  • Fast, dependable chip disposal

Options include: stock size measuring, automated length measuring systems, bar manipulating systems, infeed and outfeed systems and stackers.

Also available are various chip conveyors, safety devices and machine enclosures offered by AME and its sister division, Hennig.

Advanced Machine & Engineering Co., is a manufacturer located in Rockford, IL, serving the Machine Tool Industry with precision components and accessories, including spindle interface components, workholding devices, and, through our sister company, Hennig, machine enclosures, chip removal and filtration systems.  The Fluid Power – Safety markets are served with cylinder rod locks and safety catcher devises; and the Production Saw market with our Amsaw carbide saw machines and Speedcut blade products.  AME has manufacturing partners and customers around the world and across the U.S.  To learn more, visit www.ame.com.

Hennig, Inc. design and produces custom machine protection and chip/coolant management products for state-of-the-art machine tools.  Hennig products are designed to protect against corrosion, debris and common workplace contaminants.  Manufacturing facilities located in the U.S., Germany, Brazil, India, Japan, China and South Korea.  Repair centers are located in Machesney Park, IL; Chandler, OK; Livonia, MI; Blue Ash, OH; Mexico City, Mexico and Saltillo, Mexico.  To learn more, visit www.hennigworldwide.com.

For more information, contact:

Tim Waterman
ADVANCED MACHINE & ENGINEERING CO.
2500 Latham St.
Rockford, IL 61103
Phone: 815-316-5277
Fax: 815-962-6483
E-mail: info@ame.com
Connect with AME online: yt wp twit li gplus fb


Continue reading

Stotz Air Gages and Measuring Systems Becomes Part of Advanced Machine & Engineering’s Family of Products

Advanced Machine & Engineering (AME) in Rockford, IL, is excited to announce that they have become the exclusive North American distributor for Stotz Measuring Systems, which includes air and electronic gaging devices.

Stotz Feinmesstechnik GmbH has been a leader in gaging technology for almost 60 years.  They design, manufacture and sell air-electronic gages and control devices.  They are constantly striving to improve their designs and develop new products to solidify their position as a leader in new measuring technology.  Numerous patents within the last few years have solidified their position as a trendsetter for new measuring technology and pneumatic measuring systems.  Their diverse customer base covers many industries, including manufacturers and suppliers in the automotive, aerospace and medical industries.  Stotz gages can be manufactured to measure I.D., O.D. out-of-round, straightness, parallelism, perpendicularity, flatness, taper, match grinding applications and many other geometric tolerances.  Air gaging is a very easy-to-use method of measuring and requires no special training, plus it is non-contact technology, so it does not mark the parts.  The measurements are extremely accurate and very fast.  There are no mechanical moving parts; therefore, air gages have a very long life expectancy.  The gages, coupled with the Stotz advanced line of air-electronic columns, make the integration into a user’s measuring system an easy transition.  This is true for both simple table top systems as well as more complex robotic measuring cells with feedback to machine tools as well as integrating with an SPC program.  Some common parts that are measured using air gages are fuel injection components, transmission components, hydraulic components, bearings, connecting rods, crankshafts, camshafts, valve seats, hip stems, surgical screws and many different tapers such as HSK, CAT, BT, KM, Morse and Jacobs, both the male and female portions.

Advanced Machine & Engineering Co., is a manufacturer located in Rockford, IL, serving the Machine Tool Industry with precision components and accessories, including spindle interface components, workholding devices, and, through our sister company, Hennig, machine enclosures, chip removal and filtration systems.  The Fluid Power – Safety markets are served with cylinder rod locks and safety catcher devises; and the Production Saw market with our Amsaw carbide saw machines and Speedcut blade products.  AME has manufacturing partners and customers around the world and across the U.S.  To learn more, visit www.ame.com.

Hennig, Inc. design and produces custom machine protection and chip/coolant management products for state-of-the-art machine tools.  Hennig products are designed to protect against corrosion, debris and common workplace contaminants.  Manufacturing facilities located in the U.S., Germany, Brazil, India, Japan, China and South Korea.  Repair centers are located in Machesney Park, IL; Chandler, OK; Livonia, MI; Blue Ash, OH; Mexico City, Mexico and Saltillo, Mexico.  To learn more, visit www.hennigworldwide.com.

For more information, contact:

Tim Waterman
ADVANCED MACHINE & ENGINEERING CO.
2500 Latham St.
Rockford, IL 61103
Phone: 815-316-5277
Fax: 815-962-6483
E-mail: info@ame.com
Connect with AME online: yt wp twit li gplus fb

Continue reading

REP CALLS FOR A PITCHOUT! Injection press builder offering molders up to $40,000 credit for scrapping old machines

REP Corporation, the longtime leader in injection presses for rubber and TPE molding, announces the start of a new credit program, effective immediately and running through July 31, 2010.  Molders who validate the scrapping of their older presses can earn up to $40,000 in credit against the purchase of any new REP machine, during this period.  The announcement was made today by REP President Tim Graham, at the company’s Bartlett, Illinois headquarters, near Chicago.

Graham detailed the offer, saying it would apply to any make or model of rubber or TPE injection press.  REP requires the molder to validate the scrapping of their old machine, thereby earning a predetermined credit, based on the old machine’s age and condition.  The credit, up to $40,000, can then be applied to the purchase of any new REP injection press in the G9 series.

He further noted the advantages of a new machine.  “Besides the higher quality parts a molder can produce, owing to the level of mold mechanics, material flow and control sophistication, a new press consumes less energy, has less downtime and less maintenance requirements, so it stays in production.  Even REP presses from our earlier generations cannot match the productivity and resulting profitability of a new G9 machine.  That’s not a brag, it’s a fact and it’s one we can document,” he said, noting the new machines offer better molding strategies, improved ergonomics and faster payback for the customer.

“It’s an offer you can’t refuse,” Graham joked.

REP Corporation is responsible for all sales and service in North America.  However, this offer is being made to rubber molders worldwide by REP, based in Lyon, France.

For more information, please contact: REP CORPORATION 8N470 Tameling Court Bartlett, IL 60103-8146 Phone:  847-697-7210 Fax:  847-697-6829 Web:  www.repinjection.com Email:  tgraham@repcorp.com Attention:  Tim Graham, President

PR agency contact: Tim Daro Bernard & Company 847-934-4500 tdaro@bernardandcompany.com

Continue reading

500°F Universal Oven from Grieve

No. 945 is an electrically-heated 500°F(~260°C) universal oven from Grieve, currently used for various curing tasks at the customer’s facility. Workspace dimensions are 54” wide x 36” deep x 36” high.  6.6 KW are installed in Nichrome wire heating elements to heat the load, while a 600 CFM, 1/2-HP recirculating blower provides horizontal front to rear airflow.

The unit has 4” insulated walls, an aluminized steel exterior and Type 430 stainless steel interior. It is also equipped with an integral leg stand with casters and leveling pads.

Controls onboard No. 945 include a digital indicating temperature controller, manual reset excess temperature controller with separate contactors, recirculating blower airflow safety switch and SCR power controller.

For more information, please contact: THE GRIEVE CORPORATION, 500 Hart Road, Round Lake, Illinois 60073-2835 USA.  Phone: (847) 546-8225.  Fax: (847) 546-9210.  Web: www.grievecorp.com. Email: sales@grievecorp.com. Attention: FrankCalabrese.

NEWS RELEASE:  THE GRIEVE CORPORATION Agency contact:    Tim Daro 847-934-4500

DATE: March 22, 2010

Continue reading

HAN-KWANG INTRODUCES FULLY AUTOMATIC TUBE CUTTING LASER SYSTEM

Model TL 6015 Tube Cutting Laser System

Automated loading and parts handling system complement state-of-the-industry laser and machine control technology

Han-Kwang USA announces immediate availability of its new Model TL 6015, a tube cutting laser system capable of handling 24’ long, 6.5” diameter workpieces up to 1/4” wall thickness in mild steel and 0.200” in stainless steel.  Equipped with a powerful 2.5KW Panasonic laser and a versatile Siemens 840D CNC to control all functions of the machine, the TL 6015 can significantly increase the tube production in any department or shop, especially when used with Han-Kwang’s proprietary “Flex 3D” tube cutting software .  The unit comprises an automatic bundle loading system with tube V-support, auto-centering rotary chucking system, laser cutting station and automatic parts removal station.

Maximum positioning speed on this new laser system is 4700 ipm for the X-

Han-Kwang S5 Cutting Head, featuring Auto Focus Control; adjusts focal length of cutting lens to automatically compensate for material variations and rapid changeover

axis and 120 rpm for the rotary A-axis.  Max acceleration rate is 1G, while the laser beam is precisely controlled by the unique Han-Kwang Auto Focus Control (AFC).  This AFC technology allows the machine to automatically adjust the focal length of the cutting lens to accommodate variations in the materials being processed or changes in material feed, which eliminates the downtime normally associated with manual adjustments.

A new generation of sensing board in the S5 laser cutting head on the TL 6015 translates into faster cutting speeds on round, square or rectangular shapes.

In a recent design modification, the entire loading section of the machine has been enclosed, as depicted in the attached illustration.

For more information or to arrange a demonstration, please contact:

HAN-KWANG USA INC. Phone:  630-916-0200 Web: www.hankwang.com

Agency contact: Tim Daro Bernard & Company tdaro@bernardandcompany.com www.bernardandcompany.com

Continue reading

Christian Schedler Appointed Product Manager of the Speedcut Saw Technology Division of Advanced Machine & Engineering

During the last two years, AME’s Speedcut Division has invested in new production and measuring equipment and concentrated heavily on R & D and saw blade innovations to improve the tool life of carbide- and cermet-tipped circular saw blades.

We are very pleased to announce the promotion of Christian Schedler to the Product Manager position at this division.

In his new role, Christian will oversee P&L responsibility for the division, including its sales, application engineering, product management and project management functions.

Christian’s distinguished career has encompassed R&D, Engineering and Product Manufacturing.  He has a broad assembly and service experience on machine tools and knows the market’s needs for productivity improvements.  Prior to this promotion, he worked in service as a Global Service Rep for a German machine tool company and as a Designer of carbide saws at Advanced Machine & Engineering.  Christian has the experience, energy and judgment necessary to lead the division to continued success, insuring its future growth objectives are achieved.

Advanced Machine & Engineering Co., is a manufacturer located in Rockford, IL, serving the Machine Tool Industry with precision components and accessories, including spindle interface components, workholding devices, and, through our sister company, Hennig, machine enclosures, chip removal and filtration systems.  The Fluid Power – Safety markets are served with cylinder rod locks and safety catcher devises; and the Production Saw market with our Amsaw carbide saw machines and Speedcut blade products.  AME has manufacturing partners and customers around the world and across the U.S.  To learn more, visit www.ame.com.

Hennig, Inc. design and produces custom machine protection and chip/coolant management products for state-of-the-art machine tools.  Hennig products are designed to protect against corrosion, debris and common workplace contaminants.  Manufacturing facilities located in the U.S., Germany, Brazil, India, Japan, China and South Korea.  Repair centers are located in Machesney Park, IL; Chandler, OK; Livonia, MI; Blue Ash, OH; Mexico City, Mexico and Saltillo, Mexico.  To learn more, visit www.hennigworldwide.com.

For more information, contact:

Tim Waterman
ADVANCED MACHINE & ENGINEERING CO.
2500 Latham St.
Rockford, IL 61103
Phone: 815-316-5277
Fax: 815-962-6483
E-mail: info@ame.com
Connect with AME online: yt wp twit li gplus fb

Continue reading

CORROSION, DISCOLORATION AND CONTAMINATION IN GEAR PRODUCTION

Steps to take for avoidance of imperfections in the aesthetics and surface integrity of gearworks

Roscoe, IL-Forest City Gear recently disseminated the following tips to its employees and would like to share these ideas with the gearmaking community, as well as users and assemblers of gearworks.  This information is provided for reference only and any further questions or comments should be directed to author Fred Young, CEO of Forest City Gear.  He welcomes all feedback.

BY: Fred Young, CEO

TO: All Forest City Gear Employees

Recently and historically, we have had issues with gears that suffered from the above conditions, after heat treat. These issues can also appear during hot and humid times, as well. We previously had a sand/vapor blast unit that was used to clean off debris and contamination from gears, prior to further processing.

My suggestions for future handling, based on experience and a reading of the current technology, include the following:

  1. We should change the routings to include a hand blasting (not tumble blasting) by our heat treaters.
  2. We should stipulate the further provision to our vendors that this is initiated only for cosmetic cleaning purposes and that they are enjoined from too extensive a blasting, which could cause dimensional changes or damage to our parts.
  3. We are looking for a uniform and clean surface on all areas that are not ground and this would include gear root diameters, where appropriate. If we do not have high confidence in the individual heat treaters to perform this critical task, we should try to use the Comco blast unit we have in-house or investigate the purchase of a unit similar to the old one we had. I know that the main objections to that equipment were the excessive dust and grit surrounding it and the extra processing time required. However, the returns we have experienced from time to time over these issues demand that we take some aggressive preventative steps. Please note that this is not limited to parts that are only heat treated.
  4. When we use our ultrasonic cleaner or parts washers with soap and hot water, water spots and/or soap contamination may be objectionable to some very particular and discerning customers. Changing of the final cleaning solution may be necessary, in such cases.
  5. If it is feasible, we should use any of the currently available vacuum heat treating processes to assist us in maintaining cleanliness and an optimally professional visual appearance, which can help minimize objections by outside inspectors.

I welcome all your suggestions to further our desire for achieving “Excellence without Exception.” (This is the company motto at Forest City Gear.)  I think that if all hands are on the lookout to address the corrosion, discoloration, contamination and pitting issues and address corrective procedures prior to further processing-gear grinding, cylindrical grinding or other machine operations- this will help minimize our overall cost.  It is very difficult to address these issues after grinding has occurred, as you all know.

The September/October (2009) issue of Gear Technology had an article starting on page 60 entitled, “Gear Corrosion During the Manufacturing Process,” which focused on issues of pitting caused by corrosion, which can be very serious and ultimately lead to gear failure in operation.

While the article discussed the REM Chemical process of isotropic superfinishing in particular, much of the information is germane to the points above and will contribute to your understanding and resolution of these problems.  I encourage you to read it. The watchword at Forest City Gear is that all of us are responsible to be on the lookout and take steps to prevent this situation from future occurrence, to the greatest degree possible. It will be prudent to gather some examples and point out exactly what we are trying to prevent from going out the door, by reviewing it with all hobbing/secondary, shaping and grinding department personnel, at the earliest opportunity.

For more information on this announcement, please contact: FOREST CITY GEAR CO., INC. Web:  www.forestcitygear.com

Editor Note:  Please send any publication-generated inquiries from this article to Wendy Young at Forest City Gear, wyoung@forestcitygear.com.  Thanks much.

PR agency contact: Tim Daro Bernard & Company 847-934-4500 tdaro@bernardandcompany.com

Release:  FOREST CITY GEAR CO., INC.

Date:  January 26, 2010

Continue reading

350°F ELECTRIC BENCH OVEN FROM GRIEVE

No. 991 is an electrically-heated 350°F (~177°C) bench oven from Grieve, currently used for heating parts, including those with emissions of flammable solvents. Workspace dimensions are 28” wide x 24” deep x 18” high.  4KW are installed in Nichrome wire elements to heat the workload.

This Grieve bench oven features 2” insulated walls, leg support stand, Type 304, 2B finish stainless steel interior and exterior of brushed #4 stainless steel.  Two oven shelves are also included.

Since flammable solvents are handled in No. 991, a powered forced exhauster with powered forced airflow safety switch to shut down heat if there is an exhauster failure, as well as a purge timer to allow the oven to exhaust four volumes of fresh air prior to turning on the heat source are all onboard.

For more information, please contact: THE GRIEVE CORPORATION,   Web: www.grievecorp.com. Email: sales@grievecorp.com. Attention: Frank Calabrese.

Continue reading

Advanced Machine & Engineering Has Reasons To Breathe Easy

Using Stotz air gages to validate spindle interface components, this leading supplier keeps quality on highest levels; every part, every time

Stotz USA, LLC, is a leader in air gaging technology, products and quality gaging system integration.  According to company president, Chris Koehn, Stotz has achieved that goal by a variety of means, not the least of which has been the loyalty of good customers, who appreciate the value Stotz products brings to theirs.  One of those customers is also a longtime friend of Koehn’s and he can say that with complete honesty, because he worked there, long ago.

Advanced Machine & Engineering (AME) of Rockford, Illinois is a world player in high-quality machine tool spindle interface components.  As part of the Goellner, Inc. Group, AME enjoys a reputation throughout the machine tool industry for manufacturing the finest power drawbars, spindle shafts, guide bushings, locknuts, hydraulic sleeves, expansion gibs and more.  AME components, through their own branded products and those of their brother companies such as OTT Jakob, Spieth and Tschudin & Heid, as well as their “other brother” Hennig, itself a world leader in chip conveyor and machine protection systems, are found on nearly every major machine tool brand.

AME was a customer of Stotz before Chris Koehn ever came to work at the air gaging company.  Today, these two market leaders maintain a great working relationship, for all the right reasons.  AME demands the highest level of quality in their machining and finishing departments and Stotz air gaging systems facilitate the accomplishment of that goal, every day, according to AME Service Manager, Greg Hobbs.  “Air gaging is the only technology we’ve found that’s accurate enough to check the machine tooling and especially the spindle tapers we produce here.  That’s a fact.  In the past, we’d use hard gages and we still use them, but only for certain OD checks.  We’d blue up the tapers, insert them, give them a good twist and do our inspections.  Way too much inconsistency.  Today, with sophisticated HSK tooling, this method is too hit or miss to be reliable.  Air gaging provides dead stops on the test stand and the documentation is unbeatable for validation on the straightness, surface finish and taper angles.  Plus, the Stotz system allows us to upload all the data on every part, so we have our favorite word…documentation…for every part we produce.”

Hobbs also commented on the user-friendliness of the Stotz air column.  When the program is first input into the column for a part in the AME grinding department, for example, the Stotz column essentially becomes a PLC, providing hard data via the Ethernet connections to the host data base.  In this manner, every parameter of every part is documented and recorded.  In a classic example of the law of unintended consequences, this process is not only used on the parts run, it’s also used for calibrating the AME machines, in a predictive maintenance function.

At AME, various testing of machined spindle interface and other components is performed both at the machines in the grinding department, in a temperature-controlled 72° environment, plus in the company’s totally environment-controlled in-house testing department, supervised by the company’s Director of Quality, Brad Patterson.  He confirmed Greg Hobbs’ observation that numerous other technologies have been investigated over the years for quality checking at AME and that air gaging has been found to be the best and most reliable for this company’s applications, particularly ID dimensions and configuration.  Patterson also observed, “The sophistication of the Stotz air column is unmatched in the industry.  We get all the data required and we get it in exactly the fashion needed to support our customers.  Repeatable results and elimination of error, every time.  Plus, the set-up is much faster than on our laser mics, which can’t be used for ID measurement.”  Patterson further noted that the replacement of the bluing technique, one he termed a “black art,” with air gaging has brought and keeps AME up to the most current industry standards for quality evaluation.

The typical Stotz air column found here is the Model MSG, with four pneumatic channels or ten LVDT channels operating simultaneously, pneumatic length measuring, user specific programming up to 18 programs per column, full statistical analysis and full data transfer capability within the host network.  All info is fed into the AME host computer by serial number, so any job can be quickly retrieved, while historical records on any part produced can be easily called up for evaluation, deviation claims or to dovetail with a customer’s internal quality protocols.

Typically, as AME’s Grinding Supervisor, Sam Schubert, explains, the finished product will rest for 24 hours of soaking, allowing the diameters to normalize.  Though statistically predictable for most metal materials, thermal expansion can cause off-normal readings to occur.  For checking certain bearing journals or spindle shafts, snap gages are set to accommodate size measurements down to the twenty millionths (0.000020”) range.  The acceptable diameter tolerances for most AME products measured are in the 1-2 tenths (0.0001-0.0002”) range.

In cases where new masters are made for setting control values, those values are preset offline and programmed into the air column’s software, according to Greg Hobbs.  Stotz typically performs this function for the customer in a remote manner over the Internet, through a proprietary IP address.

Among the many products finished in this grinding department are CAT/ISO 40 taper spindles, HSK test arbors, HSK grind quills, HSK steep taper milling tools and more.  Often, older and worn spindle shafts are reverse engineered by AME for retrofits and reman’s.  Even in these cases, air gaging is used to evaluate the finish process on the ID taper, as this versatile technology is easily adapted to such applications, according to AME personnel.

Sam Schubert expanded on the use of Stotz air gaging at AME.

“We have a full and very expensive inventory of hard gages with state-of-the-art indicators attached.  But the air gages can do so much more.  We use them for set-up on the grinding machines and they save us hours, every week.  When you run the number of jobs we do here, that translates into substantial, additional work product and therefore more revenue for the company.  In terms of reliability, some of the Stotz air gages we run here have been at AME since we began using the technology, nearly ten years ago now.”  Schubert also noted the air gaging set-ups on the grinders dramatically reduce the time to first part in his department’s operation.

On one major spindle shaft project for an Asian machine tool builder, who was looking for a local source of supply in America, Schubert notes, AME was confronted with an unusually large quantity run, where tool degradation during the run would normally impact the production at some point.  After an initial batch was produced, the machine builder claimed that everything but the taper was satisfactory.  Quite surprised by this claim, AME checked all the documentation and determined that the customer’s test unit was actually out of spec, in a case where the error was repeated consistently and thus overlooked.  In the end, the AME products were deemed better than perfect, in that instance.

Sam Schubert cites a useful analogy here.  “The documentation we can produce from the air gaging procedure is like a birth certificate on every unit we make.  All our spindle shafts for customers, for example, can be viewed as a series of genetically identical twins to each other and we’re providing the documentation of their DNA.”  Quite a family.

As evidence of their commitment to this technology, Schubert notes that AME is now purchasing air gaging fixtures for all new customer applications.  This quality spindle interface manufacturer aims to “keep breathing easy” in their process and product validation, as a result.

“Stotz has been a leader in gaging technology for almost 60 years.  We are constantly striving to improve our designs and develop new products to solidify our position as a leader in measuring technology.  The Stotz customer base consists of the top manufacturers and suppliers in the machine tool, automotive, aerospace and medical industries,” according to company president, Chris Koehn.

Harold Goellner, Vice President at AME, also contributed to this article.

For more information: STOTZ USA, LLC Email:  chris@stotz-usa.com Attention:  Chris Koehn, President

All photos kindly supplied by Bill Edmundson of Advanced Machine & Engineering

Release:  STOTZ USA, LLC

Date:  January 20, 2010

Continue reading

Crowning: A Cheap Fix for Noise Reduction and Misalignment Problems and Applications On Gears

Noisy gear trains have been a common problem for gear designers for a long time. With the demands for smaller gearboxes transmitting more power at higher rpm and incumbent demands for greater efficiency, gear engineers are always searching for new ways to reduce vibration and limit noise, without increasing costs.

Some popular solutions to the noisy gear problem include enlarging the pinion to reduce undercut, using Phenolic, Delrin or other noise-absorbing products, where possible, or changing to a helical gear train.  Other methods include tightening specifications to insure greater gear quality or redesigning the acoustical absorption characteristics of the gearbox.  Occasionally, experimentation with gear ratios can limit harmonic frequency amplification, which otherwise can cause a gearbox to amplify noise like a finely tuned stereo system.  The engineer can also study material and hardness requirements, so that modifications may be made to minimize heat treatment distortion or possibly eliminate the need for heat treatment entirely.

Particular attention must also be paid to gear geometry to insure maximum contact.

Another approach to the gear noise problem that yields good results is crowning or barreling of the teeth. This technique involves changing the chordal thickness of the tooth along its axis. This modification eliminates end bearing by offering a contact bearing in the center of the gear.

A second benefit of the crowning approach to gear cutting is the minimization of misalignment problems, caused by inaccurate machining of the casting, housing, shafting, gearboxes or bearing journals. Crowning can also reduce lead problems in the gears themselves, which causes the gears to wear unevenly and bind because of eccentricities and position errors.  Obviously, a gear with a center contact is less affected by discrepant manufacturing or design; furthermore, one can reduce the backlash requirements and allow the gears to wear in rather than wear out.

Shaving is a secondary gear finishing operation done after rough hobbing or shaping to create the desired crown. Crown shaving has long been a popular method, especially in manufacturing coarse pitch gears. With the recent evolution of gear equipment capable of crowning while cutting, the need for shaving just to achieve a crown has been eliminated.

Two variations of the crown shaving method will produce a gear to compensate for off-lead or misalignment conditions.

One approach produces a crown by rocking the table during the reciprocation of work and cutter. The degree of crown is readily changed by this method. The other approach is plunge feeding, which requires dressing the shaving cutter to the desired crown. Generally, it is faster to plunge feed, but the technique can subject the cutter to greater wear.  Of course, it is more difficult to change the crown, provided one starts with good quality gears.  Shaving improves the quality of profile and reduces error in the gear tooth, through the cutting and burnishing action of the cutters.

The crown form can be produced on gear teeth in several other ways. One method is to shape the gear by use of a crown cam in the shaper back-off mechanism. The proper radius of the gear is calculated by using the amount of crown on the flank and the pressure angle of the gear.  Unfortunately, the blocks, while not complex, tend to be expensive.

The advent of the latest generation of gear equipment has made two methods of crowning while hobbing popular. Both methods produce crowns by increasing and decreasing the center distance of cutter to workpiece. The first method utilizes physical copying of a template by a hydrocopying or mechanical following device. This allows taper hobbing or even the creation of sinusoidal wave forms, if desired. More recently, the second method, CNC hobbing, has become commonplace.

Depending on software limitations, CNC allows cutting gears in almost any desired form.  A disadvantage to this approach is the high cost of the equipment, though the payback has decreased considerably, in recent years.

New CNC shapers can cut a crown gear or spline without the need for buying a special crowning cam.  On our Gleason Pfauter P 300 ES, for example, we can crown by cutting a slight right and left hand helix angle along the face width of the part.  This leaves the root diameter straight.  We also have a Bourn & Koch Fellows MS 450 with a U-axis for controlling the back-off.  It can be programmed to move the cutter spindle in and out during the stroking cycle to crown the tooth by cutting deeper at the ends of the face width and more shallow at the high point of the crown.

Who is using this gear cutting technology today?

Users of heavily loaded gears have been using crowning for quite some time.  Another area ripe for the use of crowning is in the manufacturer of hydraulic wobble motors. Here, the application is strictly for misalignment problems rather than for noisereduction. An allied area involves heavily loaded pinions used in actuators for aircraft control surfaces. Generally speaking, it is more advantageous to crown the pinion because it makes more revolutions per minute and may generate more noise. In this case, it is of paramount importance to compensate for load deflection. Unfortunately, few companies in the United States have been applying this technology to commercial fine pitch gearing. However. the few manufacturers who have tried it are most pleased with the results. Some users have reported a 5x to 10x reduction in noise, accompanied by less vibration, wear and power draw.

Prime candidates for use of the crowning technique are the small fractional horsepower motor manufacturers or anyone dealing with spur or helical pinions that are susceptible to noise or misalignment. Because crowning on foreign gear hobbing equipment has been available for a greater length of time, this method has been developed to a greater extent in Europe.

American manufacturers would be wise to take advantage of the availability of this kind of technology. Exploration of crowning as a solution to noise and misalignment problems can produce a real competitive advantage for gear manufacturers and users alike.

Fred Young, CEO Forest City Gear Roscoe, Illinois

For more information, please contact Fred Young at: Forest City Gear 11715 Main Street Roscoe, IL 61073 fyoung@forestcitygear.com 866-623-2168

AUTHOR-Fred Young is the owner and CEO of Forest City Gear Co. in Roscoe, Illinois. He has worked for the company since the mid-1950s and assumed its management in 1968. He is a graduate of Rockford College, where he studied physics, mathematics and English literature.  Mr. Young is a leading authority on gear manufacturing.

Agency contact: Tim Daro Bernard & Company tdaro@bernardandcompany.com 847-934-4500

Editor note:  Mr. Young is available for interviews on this or other gear design and manufacturing issues.  Please contact agency to arrange. Also, any publication-generated leads from this article should be sent to Wendy Young at wyoung@forestcitygear.com.  Thanks!

Continue reading