Contact us today:
Author Archives: Bernard and Company
- Older posts
- Newer posts
New Speed Connect Quick Release Mechanism for Siemens Power and Signal Cables
Siemens Industry, Inc. announced the introduction of Speed Connect, a new quick release mechanism that protects against vibration shakeout on its Motion-Connect® line of power and signal cables. Motion-Connect® cables are offered as standard on all Siemens motion control systems.
The Speed Connect release makes installation and changeover, even in very restricted space applications, fast and easy. No tools are required; just a one-quarter turn locks or unlocks the bayonet-style connectors.
All Siemens Motion-Connect® cables are system-tested to guarantee optimum performance in any motion control system, whether in a Sinumerik® CNC machine tool or Simotion® general motion control application. These cables are also compatible with Sinamics® drive systems and all families of Siemens induction, direct drive and servomotors. Motion-Connect® cables are fully shielded to prevent EMC noise emissions and protect the motion control system from ambient environmental noise. Motion-Connect® cables are certified to CE, VDE, UL and UL/CSA standards.
A wide range of cabling with the new Speed Connect quick release mechanism is immediately available. For more information, visit www.usa.siemens.com/motioncontrol.
Watch an operational video HERE.
For additional product information and inquiries, call (800) 879-8079 ext. Marketing Communications or send an e-mail to: SiemensMTBUMarCom.industry@siemens.com.
—
Siemens Industry Sector is the world’s leading supplier of innovative and environmentally friendly products, solutions and services for industrial customers. With end-to-end automation technology and industrial software, solid vertical-market expertise, and technology-based services, the sector enhances its customers’ productivity, efficiency and flexibility. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Industry Automation, Drive Technologies and Customer Services Divisions as well as the Metals Technologies Business Unit. For more information, visit http://www.usa.siemens.com/industry.
The Siemens Drive Technologies Division is the world’s leading supplier of products, systems, applications, solutions and services for the entire drive train, with electrical and mechanical components. Drive Technologies serves all vertical markets in the production and process industries as well as the infrastructure/energy segment. With its products and solutions, the division enables its customers to achieve productivity, energy efficiency and reliability. For more information, visit http://www.usa.siemens.com/drivetechnologies.
Continue reading650° Gas-fired Walk-in Oven
No. 948 is an indirect gas-heated 650°F(~343.3°C) walk-in oven from Grieve, currently used for evaporating water from plastic. 500,000 BTU/HR are installed in a modulating natural gas burner that fires into an alloy radiant tube. Workspace dimensions are 60” wide x 72” deep x 72” high.
The oven has a top-mounted heat chamber, Type 304, 2B finish stainless steel interior and an aluminized steel exterior, with 5” thick insulated walls. The insulated floor is lined with truck wheel guide tracks. A 6000 CFM, 5-HP recirculating blower provides horizontal airflow to the workload. The oven is equipped with a 1500 CFM stainless steel powered forced exhauster with motorized dampers on the intake and exhaust for accelerated cooling. For protection, safety equipment is included as required by IRI, FM and National Fire Protection Association Standard 86 for gas-heated equipment.
Controls onboard No. 948 include a digital programming temperature controller, manual reset excess temperature controller with separate contactors, 10” diameter circular chart recorder and a recirculating blower safety switch.
For more information, please contact: THE GRIEVE CORPORATION, 500 Hart Road, Round Lake, Illinois 60073-2835 USA. Phone: (847) 546-8225. Fax: (847) 546-9210. Web: www.grievecorp.com. Email: sales@grievecorp.com. Attention: Frank Calabrese.
Continue readingFOREST CITY GEAR PURCHASES NEW TAKISAWA LATHE…SEEING DOUBLE!
Twin-spindle, twin-turret turning center with twin CNC control has 16-pallet capacity and boasts 27-second cycle time in continuous mode
Takisawa TT-200G, a twin-spindle, twin-turret turning center, purchased by Forest City Gear, has made dramatic improvement in this gearmaker’s blanking production.
Roscoe, IL-Forest City Gear has purchased a Takisawa TT-200G, a fully-automated turning center with twin-spindle, twin-turret and twin-CNC operation, for its in-house blanking department. By the acquisition of this machine, according to a company spokesman, the production in the blanking department has radically improved, as the machine combines full automation with twin-sided, simultaneous machining.
With a 16-pallet capacity, this Takisawa 8” chuck type machine boasts a feed rate of 8m/min and features a standard spindle and turret plus a second C-axis spindle and turret with milling function. In addition, a bar loader, workpiece stacker, turnover unit, chip conveyor, air blower, tabulating counter and other equipment are onboard for fully automatic mode operation of the machine.
As a strictly custom gearmaker, Forest City Gear made the decision recently to develop an in-house blanking department, thereby improving its turnaround time on most jobs, according to company president, Wendy Young. “We were reliant on a number of outside suppliers and, while our volume overall is quite substantial, we were often slow to receive some small, project-specific blanks for production. Many of our jobs are short-run, highly specialized precision gears and that means we place a premium on being very efficient in our time-to-first-part protocols. The Takisawa is already making a big impact on our blanking operation here.”
Tommy Kalt, who runs the blanking department at Forest City Gear, concurs. “We’re achieving a 27-second cycle of continuous turning and the fully automatic mode means a big boost in production for our department. Because we do so many jobs that require relatively few blanks, our speed was hampered, due to excessive downtimes for set-up. That situation is diminished to a great degree with the Takisawa machine.”
This sale was made for Takisawa by Brad Fischbach of Yamazen.
Forest City Gear is a world-class supplier of high-precision gears for demanding applications in the aircraft, aerospace, defense, instrument, medical, racing (boat and auto), high-end sporting goods and other markets. The company sells its products worldwide, including to China.
Forest City Gear was founded in 1955 by Stetler and Evelyn Young, parents of the current CEO, Fred Young, and is considered among the premier gearmakers in the world.
For more information, please contact:
FOREST CITY GEAR CO., INC.
11715 Main Street
Roscoe, IL 61073-0080
Phone: 815-623-2168
Fax: 815-623-6620
Web: www.forestcitygear.com
Email: wyoung@forestcitygear.com
Attention: Wendy Young, President
FOREST CITY GEAR OFFERS NEW CAPABILITIES BROCHURE
Forest City Gear proudly announces the availability of its new capabilities brochure. This new literature details the many markets for which the company produces highly-specialized, custom gears to suit the most demanding applications for accuracy, stability and wear. A world-class gearmaker, Forest City Gear has a reputation in the international market for “excellent without exception,” the mantra of company CEO, Fred Young.
Forest City Gear produces precision gears for a variety of markets, most notably aircraft, aerospace, defense, instruments, medical, racing (boat and auto), high-end sporting goods and more. The company’s products are found on the Space Shuttle, every car in the starting field at the Indy 500, the world’s longest distance casting reel, highly sophisticated measuring instruments and Siemens magnetic resonance imaging (MRI) machines, as well as Howitzer’s, surface-to-air missiles and other military ordnance. The company proudly boasts it will have every wheel and actuator gear on Curiosity, the next generation Mars Rover vehicle. That achievement was based on its outstanding performance on Spirit and Opportunity, the current vehicles occupying the Red Planet.
Long recognized internationally as a leading gear manufacturer, the company continues its philosophy of reinvestment and ongoing purchase of the latest, most advanced gearmaking technology in the world. As Fred Young explains, “We don’t wait for the order to buy the machine, we acquire the best technology available to push our capabilities into new arenas, every day. That policy, coupled with arguably the most sophisticated gear quality lab in the world, has kept us in the forefront of the industry for decades. We’re very proud of that fact. As evidence of same, Forest City Gear counts dozens of other gear companies among our customers, as they bring work to us which they cannot perform themselves.”
The full brochure is available online at www.forestcitygear.com, which also details the company in a virtual tour of the facility, plus videos and a full personnel directory of key contacts.
For more information or a copy of this new capabilities brochure, please contact:
FOREST CITY GEAR CO., INC. 11715 Main Street Roscoe, IL 61073-0080 Phone: 815-623-2168 Fax: 815-623-6620 Web: www.forestcitygear.com Email: wyoung@forestcitygear.com Attention: Wendy Young, President
Continue reading
Warm Family Biz Chills Electricity Bills
STAMA Mill/Turn Centers with Twin Spindle Versatility
MC726/MT-2C machining center from Stama America; 30% smaller footprint than conventional mill/turn centers
Allows six-sided processing of parts in two independent operations in five axes on single machine; twice the speed of conventional MT centers with 30% less footprint
Stama America, Itasca, Illinois announces the introduction of its MC 726/MT-2C mill/turn, twin spindle machining centers for the automotive, fluid power, tooling, medical and other industries, where parts needs to be milled and turned in production operations. This new machining center is the latest iteration of the popular TANDEM concept mill/turn centers, introduced by Stama in 2007.
Two independent spindles are onboard, each on a traveling column assembly and each supporting an independent swivel table, one of which acts with a bar feeder mechanism. Workpieces are introduced to the turning spindle, then transitioned by a conveyorized gripper assembly to the milling indexer and fed to the milling spindle, before finally exiting the work area.
Complete six-sided machining is possible between the two cutting operations, all on one machine with approximately twice the speed of a conventional m/t center in 30% less footprint. Since the first part is being milled simultaneously to the next part being turned, the overall production operation is greatly enhanced, nearly doubling in many applications.
For more information on this new machining center, please visit our website or contact:
STAMA AMERICA
1063 Hawthorne
Itasca, IL 60143
Phone: 630-233-8101
Fax: 630-773-1660
Web: www.stama-america.com
Attention: Simon Knecht, Sales Engineer
Simon.knecht@stama-america.com
Thinking Outside of the Box – Literally
GM realizes “weeks to hours” reduction in line change and transmission build dynamics at Toledo Powertrain, resulting from Flexible Assembly Configuration System (FACS) and Siemens control/communication
A tried and true euphemism nowadays, “thinking outside of the box” usually refers to a pattern of thought or action that results in rapid innovation, enhanced relationships being developed from established concepts as well as new ones, plus a genuine willingness to forego past practices in favor of a better way. Enter the GF6 six-speed, front wheel transmission line at General Motors Powertrain on Alexis Road in Toledo, Ohio.
Here, a new front wheel drive transmission line for smaller, more fuel efficient vehicles such as the popular Chevy Malibu and new Chevy Cruze is currently ramping up to its initial goal of 2200 units per day. Nothing new about such an event, until a closer look reveals the method used to program this line, implement changeover, stage the workpiece flow, perform all machining, secondary operations and assemble the finished transmissions.
Greg Nazareth, GM controls engineer, demonstrates the reconfiguration procedure on the FACS server, part of the overall Flexible Assembly Configuration System, provided by Elite Engineering of Rochester Hills, Michigan.
During the development of this line, several years ago, GM engineering contacted its longtime controls suppliers to investigate ways of significantly reducing the workflow through the line, as well as enable faster changeover, reduce reprogramming and prevent the curse of all automated manufacturing lines, situations where one out-of-spec machine caused complete shutdown. Another key driver in the development of the GF6 line was the need to minimize maintenance time by installing PLCs, drives and component pallet recognition devices outside the conventional cabinetry found on traditional assembly lines. In addition, controllers were distributed throughout the system, which allowed for removal of typical zone controllers and, in turn, substantially increased system flexibility.
Following considerable investigation into the process for the new line, the major obstacle remained changeover and the need for a more flexible yet highly automated system of transmission builds. In consultation with the controls provider on the existing six-speed, rear wheel drive line, Siemens Automotive Center of Competence (Troy, Michigan), as well as third party software package provider, Elite Engineering (Rochester Hills, Michigan), a deterministic study was undertaken and the result was the line now in production. Siemens provided the PLC, CNC, HMI, RFID and its high-level Ethernet protocol, Profinet, to run on the GM network. Overlaying this hardware and communications topology, Elite Engineering delivered its Flexible Assembly Configuration System (FACS), complemented by Siemens to create its SIFACS solution, wherein all the control elements for every assembly operation and test stations would be fully integrated. SIFACS largely focuses on the integration of the core PLC software blocks and functionalities of the individual stations with the RFID tags on each of the workpiece pallets, according Jim Remski, manager of powertrain activities for Siemens.
Siemens CNC and HMI technology combine with its Profinet high-level Ethernet communications and RFID pallet tags to execute the machining, assembly and testing at this transmission plant, currently targeting an output of 2200 units/day.
AN INTEGRATED APPROACH
Within any flexible automated assembly system, the keyword is flexible. All hardware and related software must be designed with a deterministic functionality that is both valuable to the customer’s build strategy and cost-competitive, as well. Working with technical specialists in safety integrated systems and industrial communications alike was the key to the success of this project at GM Toledo. By creating a decentralized control network that was nonetheless in complete harmony with the overall workflow of the plant, GM and Siemens devised the optimum modular yet flexible architecture for the entire system. This totally integrated automation approach not only addressed multiple families of hardware involved, it also coordinates all code development, safety and communications functions into a seamless and interdependent yet highly flexible and adaptive control scheme.
This integration is nowhere more visible than in the modular and open controller and I/O rack assemblies located throughout the facility. A Siemens Simatic® S7 CPU, the Siemens Safety Integrated drives platform and all I/O, including RF antennas for RFID tag reading are configured and reside here.
Diagnostics in the system are similarly integrated, according to Matthew Thornton and Jeremy Bryant, who consulted from Siemens. “We devised pre-made templates and blocks important to the powertrain build process, as our starting point,” commented Thornton, who further noted the importance of placing the critical performance data on all the HMI panels in the system for easy operator access. “With all motion and safety functions integrated into the drives, there was no need to build a separate troubleshooting architecture for what would be a more traditional safety network of relay cabinetry.”
Bryant continued, “Only a few components talk on the Profibus system, all other I/O and automation components communicate over Profinet.
Reinhold Niesing of the Siemens Automotive Center of Competence further explained the contact process between his group and the provider of the FACS. “They provided the configuration and monitoring system, while we (Siemens) provided the automation run time system. Both systems needed to run in sync to provide GM with configurable options, when changes in production or manufacturing enhancements were needed.”
Each RFID tag carries all the information needed to produce the part at each of the machining and assembly stations in the line.
The result of this collaboration, coordinated under the Siemens Transline solution, whereby all operational, visualization and diagnostic functions are streamlined in a consistent control scheme, was the Transline HMI Lite CE package. This package provides uniform user interface for operational and diagnostic functions on the vast majority of the various machine tools, transfer lines, robotics, assembly machines, sensing devices and vision systems throughout the entire facility. As Michael Grass, project manager for Siemens, explains, “The best part is that the package can be customized to meet specific user needs and preferences. It provides our SIFACS (see sidebar) system of configurable assembly automation very useful information, as the two systems complement each other quite well.” In the safety communications area, he also noted that GM is currently reviewing another Siemens option for open safety communications technology on distributed automation systems.
RFID GETS THINGS STARTED
As a workpiece proceeds through the line, having been delivered by an AGV in most cases, each pallet is equipped with an RFID tag. Reinhold Niesing, engineering manager on the project for Siemens, explains, “The key here is the data throughput in the system, as it directly impacts the cycle time or takt time (maximum allowable time to produce one finished part or product) of the line. The tags must be able to function in static mode, whereby the data on the part must be read before the process begins. Model number, serial number and build status information are all contained in the tag. The faster we read the information, the faster the process begins.” Niesing also detailed the dynamic mode of operation for this RFID system, in which the information at subsequent line stations must be read “on the fly” without any line stoppage, as is often seen in conventional packaging, shipping or other line applications for RFID. In this case, all data are read as the tag passes by the antenna.
Often, in less sophisticated applications, the signal can degrade over time and number of reads. Here, according to the Siemens technical specialists, two interface protocols are supported, namely, ISO 15693 (open standard) and a proprietary Siemens-developed standard, Simatic RF300. The latter uses a state-of-the-art chip paired with highly optimized communications to achieve the faster data read/write rates. Large amounts of data (64kB) are handled in faster cycle times, while the overall RFID solution is applied in a high-speed, non-stop environment. One of the key drivers in the system is the fact that each RFID tag has both EEPROM and FRAM. The 20-byte EEPROM is actually designed to be a one-time programmable memory chip (OTP), a security feature that was deemed most desirable by GM for this application. Meanwhile, the FRAM can be written and rewritten many times for optimum utilization of the hardware, over time.
Despite this level of sophistication in the RFID hardware, the system easily communicates over the existing Profinet, Profibus and other common protocols.
LOGIC BLOCKS ALL AROUND
The overall thrust of the line development, according to George Jewell, the GM engineer responsible for the implementation of the FACS online at the Toledo plant, was to have consistent, even identical logic blocks at every station. This would allow, as is seminal to the FACS architecture, immediate successive modifications to be made in the machine or assembly operations performed, throughout all stages of the line. When rebalancing was needed, when an upturn/downturn in current production was required or when an entirely new model came onto the line, the changeover needed to happen in hours, rather than in weeks, as was the industry norm.
By standardizing on the hardware, software and communication protocols used, engineering costs could be contained and, as a collateral but vital side effect, maintenance on the system could be made much more efficient with much of the system hardware exposed on the line, rather than enclosed in electrical cabinets, again the norm for the industry in the past. Flexible modules would allow more rapid reconfiguration, product changes and a genuine synergy with the ongoing GM commitment to continuous improvement in the line, as the new GF6 transmission ramped up to incremental target levels of production.
Jewell noted that Siemens responded to the challenges, “…with a plug-and-play technology approach, coupled with an understanding of the processes we utilize.”
From the utility perspective, he also noted that the run-time component in the system would function without the full configuration system being online, further complementing a decentralized architecture. Bob Raven, GM controls manager, further commented, “The Siemens commitment to provide this value added functionality geared towards flexibility within our manufacturing principles has substantially supported GM Powertrain’s efforts to standardize processes, controls and continuously improve.”
Currently, GM uses the FACS at various plants in Mexico, China, India, Thailand, Korea and the U.S. — and soon in Canada and Eastern Europe, for the production of transmissions, engines and even the generator on the new Chevy Volt. These products, it should be noted, can be manufactured, assembled and tested, all within the same flexible control architecture, while supporting standardized GM processes.
Rather than textbook product life cycle management, Jewell sees FACS as more of a production line life cycle management tool, as its inherent adaptability means common hardware can be made to do diverse tasks, at varying rates, with on-the-fly changeover, in far less time than previously possible.
TYPICAL STATION DYNAMICS
On one automated assembly station, Hanwha produces the various sub-assemblies of the transmission, as other lines produce the components that go into the sub-assemblies. Adding a station, as Greg Nazareth, GM controls engineer, explained, requires simply adding a PLC with the standard SIFACS logic, desired process devices and downloading an eFACS configuration. In contrast to the traditional zone control, this reconfiguration is not a building block concept; rather, the instructions being given impact the entire line. Nazareth worked with the full GM controls team, headed by Ron Goeckerman, to implement FACS with the host server.
By contrast, all manual workstations on this line have the same download received to a PLC, provided by Siemens in its Simatic lines. While not reliant on the server network in a deterministic mode, the manual stations nonetheless utilize the same software to execute quick tooling changes, machine sequence variations, line balancing and report tracking. Operators received training from both Siemens and Elite Engineering personnel for these tasks.
All part build histories, troubleshooting and machine debugging are recorded for further analysis.
CONTROLS CALL THE BALL AT EVERY STEP
Throughout the metalcutting process here, mostly in the gear and spline forming, hobbing, grinding and finishing, CNC technology is onboard dozens of machine tools. Most of the machines here are controlled by Sinumerik® 840D, the highest-level CNC offered by Siemens. The control not only processes the particular part dimensions in the cutting theater of the machine, it also coordinates all motion control and movements into and out of the machine. Working in tandem with the other hardware and communication network software in the line, for example, ring gears cut on a Wera Profilator machine are indexed from one station to the next, in timed sequences, to coordinate with predetermined production requirements. This operation occurs in a fully automated mode, requiring no operator intervention, except for maintenance and planned inspections.
Likewise, in the machining of valve bodies and transmission cases, each step of the process is controlled by the Siemens CNC to produce the required components in the proper sequence for subsequent assembly and testing operations. During those subsequent operations, other motion control devices and software solutions provided by Siemens execute, monitor and control the assembly process, through the SIFACS solution set. (See sidebar.)
PROFINET TALKS THE TALK
Through a decentralized and cabinet-less design, GM achieves highly integrated RFID control with easy access and true out-of-the-box solutions for the control architecture installed on this line. A Profinet solution provides GM with a high-performance, reliable network with minimum bandwidth impact or additional network load achieved at this plant, all with no special hardware required, a further cost savings for GM.
SAFETY FIRST — AND LAST
Safety features are numerous here, resulting in a complete failsafe system across all Siemens Simatic PLC, I/O devices and safety-integrated drives. All safety devices are networked over Profisafe protocol, a certified safety network, eliminating time-consuming and difficult to maintain traditional hardwired safety connections. All safe I/O, failsafe drives are part of the Siemens Totally Integrated Automation (TIA) protocol. Since it is fully integrated, this protocol provides comprehensive system diagnostics,
Rear wheel drive, six-speed line has been in full production, while the new line is producing front wheel drive, six-speed transmissions for vehicles such as the Chevy Malibu and new Cruze models.
which can help guide maintenance staff to exact fault location and mitigate downtime. Since the drives, starters and machine safety are integrated into the multi-functional machine mount I/O system, Simatic ET 200pro, the overall engineering complexity is reduced because of simplicity in panel design, wiring architecture and seamless integration to the project level hardware configuration, which is reduced due to the totally integrated automation design. For service requirements in the event of a fault, hot swapping of an I/O module is possible during operation, without switching off the entire station. There is nonetheless a very high degree of integral protection, to IP65/67 standards. The fact that an enclosure is not required also helped save on the total cost of the project for GM.
MAJOR INVESTMENT PAYING OFF
Between the two lines here, GM Toledo has invested $872 million on its six-speed, rear- and front-wheel drive transmission production at this 2 million square-foot facility, which currently employs 1400 employees, most members of UAW Local 14.
The highly fuel-efficient rear-wheel drive Hydra-matic 6L80 transmission is now joined by the GF6 front-wheel drive, six-speed
units being produced on this new line under the FACS control solution that supports flexible manufacturing while driving standard processes.
As George Jewell, the GM engineer who spearheaded the implementation of FACS, stated, “From our first installation in Ramos Arizpe (Mexico) to this Toledo plant, we’ve seen great results, with activities that took months reduced to weeks and what took weeks reduced to hours. There’s less ramp-up time, plus the changeover and line balancing upsides are already proving this was a beneficial investment.”
Please direct all inquiries generated by this story to:
John Meyer
Siemens Industry, Inc.
Marketing Communications
390 Kent Avenue
Elk Grove Village, IL 60007
Phone: 847-640-1595
Fax: 847-437-0784
Email: SiemensMTBUMarCom.sea@siemens.com
Wera Profilator gear profiler run by a Sinumerik 840D, the highest level CNC in the Siemens line, used for fully automated production of ring gears.
SIFACS — THE SIEMENS SOLUTION FOR THE FLEXIBLE ASSEMBLY CONFIGURATION SYSTEM (FACS)
Working in tandem with GM process specialists and Elite Engineering, the third party provider of the unique Flexible Assembly Configuration System (FAC
S) used at this GM Toledo transmission plant, Siemens personnel created SIFACS, a solution that integrates the host IT system at the facility with all hardware and software in the line.
SIFACS is quite literally the hub of the information management system for this line, as it coordinates all demand input from the GM server and FACS configuration stations, transmits it via the Profinet communications network in the plant to all the onboard PLC, HMI, motor starters, frequency converters, safety-integrated drives and other controls at the various machine tool, assembly and test stations.
Likewise, the feedback data from all RFID, smart sensors, RS-232 interfaces, hand scanners and other I/O devices are tracked and captured for detailed analysis by production management here.
In this way, not only is the system’s production output closely controlled, but also the line stations themselves can be reconfigured, using a unique Siemens micro memory card that allows easy component replacement, without a laptop. All PLC logic, hardware configuration and process data are embedded on the card, which is interfaced to three Ethernet and one Profibus ports for instant communications.
Critical for a continuous moving line such as those found here, the Siemens Simatic control systems are executing motion commands read from the RFID devices at 8000 bytes/sec, far in excess of the ISO 15693 standards for read and write performance.
SIFACS HMI screen extensions with Cognex Vision View further permit constant monitoring by both a team leader and a conveyor controller, eliminating a PC dedicated to a vision system.
All the smart devices on the line are also interfaced to the SIFACS solution, including fastening, leak test and pressing systems, plus barcode readers, barcode printers, robotic articulation and handling devices, vision systems and protocol gateways.
eFACS functionality is finally integrated into the SIFACS, as this feature of the Elite Engineering system provides connection establishment and monitoring, as well as configuration, process and status data exchanges, plus management of the model configuration data, all stored on the system.
On the most practical of levels, even the data structures feed to the Andon boards for in-plant display is integrated through the resident IT system via SIFACS.
Process Improvement Tools and Process Efficiency Tools, provided with the FACS, enable both process and production engineers to collect data and fine tune the system in real time, keeping build status and cycle time information always current. Line and station balancing can likewise be achieved on-the-fly, with complete process efficiency, operator loading, anticipated cycle time, even individual process operation time calculations being made, charted, displayed and rapidly analyzed by the team leader or station control personnel, in a hierarchy of need-to-know, need-to-act protocol.
The net effects of the Siemens SIFACS® system and the Elite eFACS are sustainable, highly flexible production scenarios, coupled with lower life cycle costs, as the controls and station hardware need not be re-invented for each new model, as well as lean manufacturing strategies, since the line can be constantly tuned without interruption. The flexibility, data analysis and transparent metrics of these systems further allow all employees to understand the current line performance in real time and to make suggestions for improvements that can be implemented almost immediately.
“It’s a win-win-win for all parties involved,” commented George Jewell of GM, whose team pioneered the development and application of these systems for his company’s various plants. Further advancements in FACS and SIFACS are currently being introduced at other GM facilities worldwide, according to Jewell.
For additional product information and inquiries:
SIEMENS INDUSTRY, INC.
DRIVE TECHNOLOGIES
MOTION CONTROL
MACHINE TOOL BUSINESS
390 Kent Avenue
Elk Grove Village, IL 60007
Phone: 847-640-1595
Fax: 847-437-0784
Web: Email: SiemensMTBUMarCom.sea@siemens.com
Attention: John Meyer, Manager, Marketing Communication
Follow us on Facebook: www.facebook.com/SiemensCNC or Twitter: www.twitter.com/siemens_cnc_us.
—
Siemens Industry Sector is the world’s leading supplier of innovative and environmentally friendly products, solutions and services for industrial customers. With end-to-end automation technology and industrial software, solid vertical-market expertise, and technology-based services, the sector enhances its customers’ productivity, efficiency and flexibility. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Industry Automation, Drive Technologies and Customer Services Divisions as well as the Metals Technologies Business Unit. For more information, visit http://www.usa.siemens.com/industry.
The Siemens Drive Technologies Division is the world’s leading supplier of products, systems, applications, solutions and services for the entire drive train, with electrical and mechanical components. Drive Technologies serves all vertical markets in the production and process industries as well as the infrastructure/energy segment. With its products and solutions, the division enables its customers to achieve productivity, energy efficiency and reliability. For more information, visit http://www.usa.siemens.com/drivetechnologies.
Continue readingWinner of Siemens Orange County Chopper 10th Anniversary Bike Named from IMTS 2010
CHICAGO — During this year’s IMTS, Siemens raffled off a 10th anniversary motorcycle built by Orange County Choppers (OCC), the custom build shop owned by Paul Teutel and popularized on national TV. Over 3000 people registered for the raffle during
the six-day event, held at McCormick Place in Chicago, this past September. Recently, the winner received the bike from OCC.
The winner was Bob Pool, machining supervisor at Riverview Manufacturing Inc., located in Palmyra, Missouri and a division of Doyle Equipment Manufacturing Company, across the Mississippi River in Quincy, Illinois. Doyle is a major manufacturer of dry bulk handling machinery and Riverview fabricates large-capacity fertilizer spreaders and other equipment for its parent company.
As Bob tells his story, “I’d gone to IMTS with a colleague from Riverview and we noticed the crowd at the Siemens booth. We were waiting in a very long line to get our picture taken with Paul Teutel from Orange County Choppers and the nice young lady who was registering us asked if we wanted to sign up to win the motorcycle. I’d ridden bikes all my life but never owned one. I figured I’d take the chance, but didn’t think about it much, after signing up. The photographer said the photos would be up at the website a couple days later and, when I checked, I couldn’t find them, so I called Siemens. The next morning, I came into the shop and saw a message from Siemens. I called and asked about the photos and got steered to the right spot on the website, but the person said he was really calling for another reason. To my surprise, he said I’d won the bike!”
After signing the necessary forms and briefly considering a trip to OCC to ride it home, Bob decided to take receipt of the bike by delivery. It arrived and he immediately took for a ride…several, actually, he says. “I knew the weather was about to change here in the Midwest, so I got in all the rides I could. Now that it’s turning cold, it’ll go into a nice, warm place.”
Riverview is a 25-person shop with full CNC machining, welding and assembly capabilities, all used to produce the 6- and 8-ton spreaders and other Doyle brand equipment built here. Bob says he looks forward to taking very good care of his new bike and using it for many years to come. “I’m really enjoying it and am sure glad I stopped by the Siemens booth at IMTS!”
For more information:
SIEMENS INDUSTRY, INC.
DRIVE TECHNOLOGIES
MOTION CONTROL
MACHINE TOOL BUSINESS
390 Kent Avenue
Elk Grove Village, IL 60007
Phone: 847-640-1595
Fax: 847-437-0784
Web: www.usa.siemens.com/cnc
Email: SiemensMTBUMarCom.sea@siemens.com
Attention: John Meyer, Manager, Marketing Communication
Follow us on Facebook: www.facebook.com/SiemensCNC or Twitter: www.twitter.com/siemens_cnc_us.
—
Siemens Industry Sector is the world’s leading supplier of innovative and environmentally friendly products, solutions and services for industrial customers. With end-to-end automation technology and industrial software, solid vertical-market expertise, and technology-based services, the sector enhances its customers’ productivity, efficiency and flexibility. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Industry Automation, Drive Technologies and Customer Services Divisions as well as the Metals Technologies Business Unit. For more information, visit http://www.usa.siemens.com/industry.
The Siemens Drive Technologies Division is the world’s leading supplier of products, systems, applications, solutions and services for the entire drive train, with electrical and mechanical components. Drive Technologies serves all vertical markets in the production and process industries as well as the infrastructure/energy segment. With its products and solutions, the division enables its customers to achieve productivity, energy efficiency and reliability. For more information, visit http://www.usa.siemens.com/drivetechnologies.
Continue readingSiemens New Sinamics G110 D Distributed Drive for Material Handling & Industrial Applications
ATLANTA — Siemens today announced the release of the new Sinamics® G110D drive platform. The latest solution in the company’s Totally Integrated Automation (TIA) portfolio, the Sinamics G110D is ideal for installation in close proximity to motors located throughout facilities where dust and water ingression are a concern.
The Sinamics G110D combines improved functionality, increased energy efficiency, a smaller footprint, lower total cost-of-ownership and enhanced usability in a single drive. Applications for this new drive range from material handling or packaging conveyors and airport baggage carousels — to pumps, fans, compressors and other industrial equipment.
Offered as an economically-priced drive with improved features, the Sinamics G110D includes integrated plug-and-play power and control for easier installation and an optional Intelligent Operator Panel (IOP) for simple text application setup in a reduced footprint. The IOP further assists the machine operator with a greater level of control, as well as alarm status alerts and resolution advice, so troubleshooting time is greatly reduced.
The Sinamics G110D includes an optional power disconnect switch and the IP65 metal housing enclosure has a low profile for easier mounting near the motor, with no drive cabinet required, for further space savings.
The Sinamics G110D is suitable for either direct communication with a Programmable Logic Controller (PLC) or control via I/O inputs. AS-Interface bus configuration and optional maintenance and manual-auto switch are incorporated into the drive, making it easy to integrate with other hardware in an overall control schematic.
Integrated brake control and quick stop functions provide a higher degree of reliability in heavy-load operations.
The new Sinamics G110D complements the recently introduced Sinamics G120D drive, which offers many of the same features plus safety integrated design (Safe Limit Speed, Safe
Stop 1 and Safe Torque Off) and power regeneration capability back to the supply.
For more information on the new Sinamics G110D drive platform, visit: www.usa.siemens.com/motioncontrol.
For specific product information and inquiries, call (800) 879-8079 ext. Marketing Communications or send an e-mail to: SiemensMTBUMarCom.industry@siemens.com.
Continue reading
Grieve 1400ºF Box Furnace
No. 863 is an electrically-heated 1400°F(~760°C) box furnace from Grieve, currently used for preheating molds. 52 KW are installed in nickel chrome wire coils supported by a stainless steel frame. A heat resisting alloy recirculating blower is powered by a 7½ HP motor with a V-belt drive. The blower provides upward airflow to the oven. Workspace dimensions are 30” wide x 48” deep x 30” high.
The unit has 7” thick insulated walls with stainless steel covers. The oven was specially built with inert atmosphere construction. This consists of a continuously welded outer shell, high temperature door gasket, sealed heater terminal boxes, inert atmosphere inlet and inert atmosphere outlet.
Controls onboard No. 863 include a motor-operated vertical lift door and a 4-point strip chart recorder.
For more information, please contact: THE GRIEVE CORPORATION, 500 Hart Road, Round Lake, Illinois 60073-2835 USA. Phone: (847) 546-8225. Fax: (847) 546-9210. Web:www.grievecorp.com. Email: sales@grievecorp.com. Attention: Frank Calabrese.
Continue reading- Older posts
- Newer posts