(847) 934-4500

Contact us today:

Tag Archives: SIMOTION

Upgraded Controls On ESCO Machine Help Reduce Urethane Cutting Production Time From 3½ Hours To 20 Minutes

Advanced motors, drives and rapid feedback controls make substantial improvements in machine performance at Grand Rapids supplier to poly foam insulation and padding industries

As Rick Hungerford, president and CEO of Edge-Sweets (ESCO) points out, think of the mattress that remembers, the steering wheel that saves lives or the bandage pad with built-in antibiotic.  All these products start from blocks of cast polyurethane foam in various densities, then get cut, profiled or shaped by special machinery.  ESCO is a leading manufacturer of such machinery, supplying the furniture, mattress, automotive, packaging, pipe insulation, healthcare and other industries with automated CNC profilers and horizontal cutting machines.  Production speeds up to 840 inches per minute (21.33 meters per minute) are achieved on flexible and rebonded polyurethane, latex and viscoelastic materials, when used as either stand-alone cutting machinery or in tandem with automated materials handling and packaging lines.   The ESCO end user base reaches into many industries in the global market.

On two recent developments in the company’s machinery line, an engineering evaluation of competing motor, drive and controls lines was conducted, under the direction of Hungerford, who notes, “On our PMIII-1530, a horizontal profile saw with a 1.5 meter x 3 meter block cutting capability, we worked with one of our most trusted local suppliers of automation components, Wes Morgan from Electro-Matic Products, who introduced us to the Siemens motion controller, servomotor, gearmotor and drive package. We were seeking a controls platform that would have global support and standards compliance, as more of our machines are utilized for production outside the U.S. today than at any time in the past.” Hungerford further noted that, while the axes of motion are relatively limited on his company’s machine lines, the high-tension maintained and the need for precise positioning of the cutting wire on this machine made it necessary to have the most accurate and durable motor and drive combinations available onboard.

Upgraded Controls On ESCO Machine Help Reduce Urethane Cutting Production Time From 3½ Hours To 20 Minutes | Siemens Machine Tool Systems

Rick Hungerford Jr., president and CEO of ESCO (left), inspects the drives cabinet with Wes Morgan of Electro-Matic, the local Grand Rapids supplier of the Siemens product line.

Incorporating the Simotion motion controller, Sinamics low-voltage drives and Simotics S-1FK7 servomotors from Siemens gave ESCO not only the performance levels desired, but also the global application engineering, technical support and parts inventory benefits of this international supplier. “Our machines are in use around the world,” states Hungerford, “and we needed great confidence in our control package supplier’s ability to support the machines and our sales team with parts and service, everywhere in the marketplace. In Siemens, we found such a partner. Plus, their local representative here in Grand Rapids, Electro-Matic, had established a solid relationship with our company and my team.”

Functionally, according to Hungerford, the Siemens package allowed a single, common DC bus without stand-alone drives plus the system provided by Siemens is scalable to allow the cutting machine being interfaced with additional mechanisms and loading/unloading devices as part of an overall automated production line for customers. The PMIII-1530 is operated by a single PC plus a remote operator pendant that allows free movement with full operation control of the machine during setup.

In selecting and programming the proper components for the ESCO machine, Siemens and Electro-Matic Products provided an optimized solution using the Sizer and Simotion Scout software provided by the component manufacturer. Once all the parts are in-house, construction of this machine is typically achieved in approximately 30 days, according to Hungerford, as ESCO does the bulk of the framework and final assembly onsite at the Grand Rapids factory.

Upgraded Controls On ESCO Machine Help Reduce Urethane Cutting Production Time From 3½ Hours To 20 Minutes | Siemens Machine Tool Systems

The Foamular® industrial pipe insulation produced on the PMIII-1530 is used in the oil and gas industry.

The operation of the machine (as shown in the photos) begins with the CAM programming software written by the ESCO engineering team, plus additional data programs made available through ASTM for pipe and tube configuration. Hungerford mused, “It’s sorta like Etch-A-Sketch, but hardly a toy. Our engineers can take the canned programs and quickly make the necessary adjustments to the cutting paths to suit the machine cutting capabilities and the workpieces our customers are producing.” The software program is vital in accomplishing both an effective cutting as well as optimum utilization of the raw materials, through the nesting of the parts in the master workpiece block, done by the computational algorithms in the program.

The workpiece is then loaded onto the vacuum table, the cutting head is positioned and the process begins. The material used by the ESCO customer, in this case, is Owens Corning Foamular®, a rigid polystyrene prepared in a tongue-and-groove configuration for industrial pipe insulation as the end product.

In operation, the motors, drives and feedback devices work in tandem to ensure a quick, smooth and efficient cutting of the material into the desired shapes.

The customer using the upgraded controls model of this ESCO machine is currently reporting a reduction in its cutting cycle times from 3½ hours to 20 minutes, according to Hungerford.

Commenting further about the drive performance, Wes Morgan of Electro-Matic noted that the Sinamics drive platform offered three distinct benefits. “The product line is consistent across a wide range of motor capacities, which is a real advantage for ESCO. Also, the regenerative feedback feature creates substantial energy savings for the end users, plus the Sinamics drives have a smaller footprint, owing to the dual motor modules and common DC bus system and this results in a more compact control cabinet.” He also noted the Simotion motion controller allows ESCO a single platform to perform simple axis to very complex integrated motion controls with a standard product, resulting in greater efficiencies in the design, programming and installation time for this builder and its customers.

Upgraded Controls On ESCO Machine Help Reduce Urethane Cutting Production Time From 3½ Hours To 20 Minutes | Siemens Machine Tool SystemsOn the second machine where ESCO implemented a controls upgrade, the HTX high-tension slitter/stacker incorporates a Simatic PLC, Sinamics variable frequency drives, Simotics servomotors, motor starters and contactors from Siemens. This machine, instead of a cutting wire, utilizes a tangential razor-like blade in a slit-and-retract motion, with the blade articulating on each pass through the material workpiece and then being automatically coated with silicone in the blade housing to maintain cut integrity.

The unit shown in the photographs here is the HTX 51-88 (indicating a 51” high x 88” wide x 132” long cutting zone), making ¼” thick cuts in a poly foam block. The machine is further capable of 1/8” cuts in production, as Hungerford noted. “This machine operates in tandem with other machinery we build, so the conveyor feed mechanism positions the workpiece for the cutting at the first station, then indexes it through the HTX to the next stations, where additional cuts and profilings are performed.

ESCO also produces vertical cutting machines, convoluters, roll splitters, contour cutting machines, metering and dispensing solutions for lab and production use, plus the company supplies fully integrated systems for polyurethane processing, including robots, curing ovens and mold designs to its worldwide customer base.

For more information on this story, please contact:

EDGE-SWEETS COMPANY
ESCO GROUP INC.
2887 Three Mile Road NW
Grand Rapids, MI 49534
Phone: 616-453-5458
Web: www.edge-sweets.com
Email: info@edge-sweets.com
Attention: Rick Hungerford, Jr., President & CEO

or

SIEMENS INDUSTRY, INC.
DIGITAL FACTORY
GENERAL MOTION CONTROL
390 Kent Avenue
Elk Grove Village, IL 60007
Phone: 847-640-1595
Fax: 847-437-0784
Web: www.usa.siemens.com/lv-drives
Email: SiemensMTBUMarCom.industry@siemens.com
Attention: John Meyer, Manager, Marketing Communications

Watch videos of these machines in operation! https://youtu.be/4lpQ22d7niM

Continue reading

Fabtech 2013: Press Safety with Siemens

Press safety: ready-to-install Simotion Safety Unit provides certified control reliable solution for Windsor Match Plate & Tool Ltd. Click here to view the case study and visit Siemens at Fabtech, Booth S-4686!

For additional product information and inquiries, call (800) 879-8079 ext. Marketing Communications or send an e-mail to: SiemensMTBUMarCom.industry@siemens.com.

Follow us on Facebook: www.facebook.com/SiemensCNC or Twitter:  www.twitter.com/siemens_cnc_us.

Siemens Industry Sector is the world’s leading supplier of innovative and environmentally friendly products, solutions and services for industrial customers. With end-to-end automation technology and industrial software, solid vertical-market expertise, and technology-based services, the sector enhances its customers’ productivity, efficiency and flexibility. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Industry Automation, Drive Technologies and Customer Services Divisions as well as the Metals Technologies Business Unit. For more information, visit http://www.usa.siemens.com/industry.

The Siemens Drive Technologies Division is the world’s leading supplier of products, systems, applications, solutions and services for the entire drive train, with electrical and mechanical components. Drive Technologies serves all vertical markets in the production and process industries as well as the infrastructure/energy segment. With its products and solutions, the division enables its customers to achieve productivity, energy efficiency and reliability. For more information, visit http://www.usa.siemens.com/drivetechnologies.

Continue reading

Fabtech 2013: Siemens Metal Forming Solution Package

When implementing mechanical and hydraulic presses and handling equipment, for instance in the automotive industry, a predominantly modular design ensures the highest degree of flexibility and shortest engineering and installation times for customized systems. The Metal Forming Solution Package provides all of the functions required to automate press systems, therefore supporting press manufacturers when quickly implementing their specific press concepts.

View the Metal Forming Solution Package Brochure and visit Siemens at Fabtech, Booth S-4686!

Additional information can be found on the Siemens US metalforming website.

See below for customer reference videos:

For specific product information and inquiries, call (800) 879-8079 ext. Marketing Communications or send an e-mail to: SiemensMTBUMarCom.industry@siemens.com.

Siemens Industry Sector is the world’s leading supplier of innovative and environmentally friendly products, solutions and services for industrial customers. With end-to-end automation technology and industrial software, solid vertical-market expertise, and technology-based services, the sector enhances its customers’ productivity, efficiency and flexibility. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Industry Automation, Drive Technologies and Customer Services Divisions as well as the Metals Technologies Business Unit. For more information, visit http://www.usa.siemens.com/industry.

The Siemens Drive Technologies Division is the world’s leading supplier of products, systems, applications, solutions and services for the entire drive train, with electrical and mechanical components. Drive Technologies serves all vertical markets in the production and process industries as well as the infrastructure/energy segment. With its products and solutions, the division enables its customers to achieve productivity, energy efficiency and reliability. For more information, visit http://www.usa.siemens.com/drivetechnologies.

Continue reading

Bretting Develops New Controls Platform for Napkin, Interfold Towel and Tissue Machine Lines

Planning and partnerships lead to success on export machine series

C.G. Bretting Manufacturing Company Inc. has been in business for over 120 years, serving the OEM paper converting industry and providing contract manufacturing services for more than 60 years. Bretting is located in Ashland, Wisconsin on the southern shores of Lake Superior. The fourth generation of the Bretting family leads the business today, while the fifth generation is currently on deck.

Bretting paper converting machine, utilizing all Siemens controls, including motors, drives, PLC and motion controller plus related software.  Bretting builds machines for various paper converting operations such as napkins, interfolded paper towels, bathroom roll and boxed facial tissues.

Bretting paper converting machine, utilizing all Siemens controls, including motors, drives, PLC and motion controller plus related software. Bretting builds machines for various paper converting operations such as napkins, interfolded paper towels, bathroom roll and boxed facial tissues.

OEM paper converting equipment converts rolls of paper into folded and rolled paper products such as napkins, interfolded napkins, singlefold facial tissue, multifold paper toweling, kitchen towel rolls and bathroom tissue rolls.  Bretting is an industry leader in global sales and service of OEM paper converting equipment. Machines are designed, manufactured, assembled and tested at the Ashland factory, prior to shipping to the customer’s site for set-up and commissioning.

Simotion motion controllers, Sinamics drives, Simatic PLCs and various Simotics motors were used in the building of the first all-Siemens controlled platform machine at Bretting.

Simotion motion controllers, Sinamics drives, Simatic PLCs and various Simotics motors were used in the building of the first all-Siemens controlled platform machine at Bretting.

Bretting recently delivered its first paper converting machine controlled entirely by Siemens hardware and software.  The project was a major undertaking for Bretting, Siemens and Standard Electric (local Siemens distributor) and was deemed a great success, according to Dave Vedder, director of engineering, C.G. Bretting.  “Planning and partnerships with our vendors were keys to our success on this first 41-axis Siemens-controlled machine.  We planned for success and achieved it. The project started more than 24 months prior to delivery of the machine to the customer.”

Vedder continued to explain the process.

“The project started with listening to our customers, who had been requesting Siemens automation on our equipment for some time. Meeting customer needs is a Bretting strength. We realized it was time to act.  The Bretting Leadership Team commissioned an effort to provide an acceptable solution. That solution comprised Sinamics drives, Simatic PLC and Simotion motion controllers.”

The purchasing department then met with the local distributor, Standard Electric. Meetings were organized with Standard Electric, Siemens and Bretting within several weeks.  Planning for the first Siemens machine was initiated.   It was determined the products and software available would satisfy the full range of Bretting machine functionality and other requirements. Initial planning included:

  • The establishment of partnerships, along with clarification of pricing, delivery, support and inventory levels
  • Small dedicated R&D lab for training, programming and testing
  • Training for field service, hardware engineers and software programmers
  • First Machine Support for engineering, programming, build, startup and full commissioning in the field

A formal customer inquiry for a new machine followed about six months later.  The inquiry included a requirement for a full Siemens automation solution on the customer’s new paper converting machine.  Bretting, Siemens and Standard Electric were now well prepared and ready to respond, Vedder explained. Proposals for the machine with full Siemens automation solutions were shared with the customer.  A new set of planning protocols was started, one that focused specifically on the first Bretting paper converting machine to be equipped entirely with the new vendor’s products and software onboard.

First machine planning included-

  • Siemens hardware and software engineering coaching
  • Bill of Material reviews
  • Schedules for parts ordering and delivery
  • Machine build support
  • Machine startup support
  • Machine installation in the field support
  • Warranty and field issue support process

The customer ordered the machine approximately six months after the initial inquiry.  The plans for the first machine were approved and authorized for production. Some checks and adjustments were required during the machine engineering and build process. “The combined talents of Siemens, Standard Electric and Bretting addressed and resolved any issues as they occurred,” Dave Vedder explained. “The customer approved the machine during the Final Machine Checkout process. The time from Order to Checkout was similar to other machines we’ve produced during recent years.”

The machine was then disassembled and shipped to the customer’s site in Europe. The reassembly, startup and final commissioning proceeded without issue.  The machine is currently running successfully in the field, with no significant service issues reported, according to Vedder.

Planning and partnership were key to the success of this first export paper converting machine with Siemens automation onboard, all made possible by the combined efforts of the machine builder, the controls supplier and the local value-adding electrical distributor.

Bretting is an ISO9001:2008 Certified manufacturer with sales representatives worldwide.

For further information on this story, please contact:

C.G. BRETTING MANUFACTURING INC.
3401 Lake Park Road
Ashland, WI 54806
Phone: 715-682-5231
Web: www.bretting.com
Attention: David Vedder, Director of Engineering

or

SIEMENS INDUSTRY, INC.
Drive Technologies — Motion Control
390 Kent Avenue
Elk Grove Village, IL  60007
Phone: 847-640-1595 Fax: 847-437-0784
Web:  www.usa.siemens.com/motioncontrol
Email:  SiemensMTBUMarCom.industry@siemens.com
Attention:  John Meyer, Manager, Marketing Communications

Continue reading

Integrated Controls Automation Enables High-Speed Float-Glass Stacking

Grenzebach automates new High-Speed Stacker with Siemens SIMOTION motion control and SIMATIC PLCs fully integrated into one system, for increased throughput, reduced production costs, better finished glass quality and improved safety.

The float glass industry is facing multiple challenges, not the least of which is a growing array of applications requiring a broader offering of products and sizes, and competition from offshore producers.

The need for more flexibility and speed in the production process has never been so important. Similarly, the necessity to reduce production costs and optimize profit margins has never been so critical. Smart glass producers are finding that replacing manual functions with streamlined automation is not only meeting these objectives, but also has become a requirement for long-term stability and success.

Of all the functions on the float glass line, stacking remains the most labor intensive, and therefore a key target for automation. Glass producers have been looking for a more efficient, reliable and cost-effective method to stack the expanding selection of glass sizes they manufacture. Some producers have automated their stacking, but have experienced difficulties with speed of throughput, because of glass stacking displacement causing breakage.

But many more float glass producers are still handling stacking manually without the aid of any controls automation.

Fully automated cold-end line

Effectively streamlining the uniformity and quality in the making of plate glass – a new generation of glass-handling equipment has emerged, which is destined to change the landscape of cold-end line process efficiencies. Developed by Grenzebach, in tandem with Siemens, a new line of glass-handling equipment is being released featuring integrated controls systems that provide a fully automated solution to the handling of finished float glass. Every function of the cold-end line is being integrated into one controls automation platform – including take-over of the glass from the lehr, cutting the glass ribbon into sheets of optimum size, glass snapping, rejection of faulty glass sheets, sorting according to size and quality, and stacking into glass racks with robotics.

The cold-end line requires that multiple, continuously-operating functions be precisely and sequentially connected. Grenzebach and Siemens have effectively brought each of these functions into one complete and totally integrated automation controls system, with the net effect of reducing production costs and increasing throughput. This package of automation controls is equally applicable to individual machines in the line, so additional line equipment can easily be added to the system at the discretion of the plant.

Grenzebach

Grenzebach is a pioneer in float glass cold-end equipment. In 1974, the company developed the world’s first processing systems for automated float glass production. In addition to machines for transport and handling operations, and cutting and breaking lines, systems for identifying flaws, glass quality control and optimization of material yield have also been created.

Grenzebach Corporation is the U.S. subsidiary of Grenzebach Maschinenbau GmbH of Hamlar, Germany, which is a global manufacturer of production equipment for the flat glass and construction material industries. It is recognized as an international mechanical engineering company, with development and production facilities in Germany, the United States and China. Worldwide, the Grenzebach Group has some 1,400 employees.

High-Speed Stacker

The first piece of Grenzebach equipment to exclusively utilize this advanced automation technology is the company’s new High-Speed Stacker. Designed to increase glass manufacturer’s efficiency and flexibility, it was developed for stacking small glass formats with high cycle times, and is currently the only device which can stack glass sheets in less than a one-second cycle. The new system is the world’s most flexible glass stacker.

It is a robot-assisted float glass stacker, which reaches its speed from quickly forming sub-packs of glass and achieves its flexibility by stacking the sub-packs with a robot. The system improves employee working conditions and stacking accuracy and efficiency, while decreasing product damage and ultimately costs. The High Speed Stacker is an ideal answer to today’s flexibility and speed demands in the glass manufacturing industry.

The High-Speed Stacker stacks glass formats from 12” x 18” up to 73” x 97”, and then transports glass sheets by a suction belt into a packet frame, where each sheet is placed successively until a sub-pack has been created. Next the packet is transported to a robot for take-off, either from above or from the side, to be stored on a glass rack that is used to transport the product to other facility locations or to end customers.

The system’s six-axis robots are capable of correcting the stacking alignment and creating precise glass stacks. For small glass sheets, two packets are built up and stacked parallel. Using this production method, up to 80 glass plates per minute can be taken off and stacked. The robots have a payload capacity of up to 220 lbs. and also feature integrated energy supply systems to reduce floor space.

The stacker can stack multiple sizes of glass with varying orientation – landscape or portrait, tin side in or tin side out with accuracy and speed. The High-Speed Stacker offers manufacturers the flexibility to adapt to product variations and rack and equipment changes. Feeding can be performed in a double stream, so that two packets are built up and stacked in parallel. It can be integrated into existing side-legs, but also demonstrates its stacking qualities in off-line cutting operations.

High-Speed Stackers can automate the entire packing capacity of a typical float glass production line, and can completely eliminate manual packing of glass.

Ideally, the angle of the glass rack is known and accurate. Since glass is heavy and the racks are being exposed to rough handling during regular operations, this angle can change over time compromising the structural integrity of the rack. As a result, a conventional stacker would not stack the glass in an optimal manner and glass breakage could occur. The robot of the Grenzebach High-Speed Stacker scans the rack for dimensional and angular discrepancies and adjusts its stacking program according to the actual geometry of the rack.

“Our customers have been demanding a better solution for stacking the many different glass sizes that they manufacture,” says Gerald Haas with Grenzebach Corporation. “Until now, they have had to rely on manual labor for their stacking operations. With the High-Speed Stacker, not only do they improve their employee’s working conditions, but they increase their operational efficiency and flexibility.”

Totally Integrated Automation

Grenzebach’s totally automated cold-end line, and specific application to the High-Speed Stacker, is functionally based on Siemens’ concept of Totally Integrated Automation (TIA). TIA is characterized by its unique continuity. It provides maximum transparency at all levels with reduced interfacing requirements. It encompasses the field level and production control level, up to the corporate management level.

It also provides maximum interoperability, covering the controller, HMI and drives, up to the process control system. This reduces the complexity of the automation solution in the plant.

Motion Control, PLCs and Tech functions in one system

Central to Siemens’ TIA system in place with the Grenzebach line and High-Speed Stacker is SIMOTION®, Siemens latest generation of motion controller. SIMOTION, which includes a palate of high-tech control system components which are optimally harmonized.

Most machines require motion control (positioning, synchronous operation), PLC functionality and technology tasks (i.e. pressure control and temperature control).

The fusion of these functions into one system – as with SIMOTION – has a number of advantages, such as lower engineering costs, higher machine performance, the elimination of time-critical interfaces between individual components and simple, uniform and transparent programming and diagnostics for the entire machine with a single tool. The focus here is placed on a simple and flexible solution for numerous motion control tasks.

The motion controller, the drives and the motors encompass the scope of the Grenzebach cold-end line needs. This was a very big step forward technologically for Grenzebach, in terms of the wiring, drive integration and motion control. Taking standard, off-the-shelf Siemens technologies and applying them to a machine solution presented significant advantages to Grenzebach as an OEM.

Integrated with SIMOTION is Siemens SIMATIC® S7-300 automation system. Applicable for centralized and distributed configurations, it has the ability to integrate powerful CPUs with Industrial Ethernet/PROFINET interface. It can be set up in a modular configuration without the need for slot rules with I/O modules.

The Siemens SIMOTION motion control and SIMATIC controller provide a fusion of motion control, PLC and technology functions in one unit. This means that the new sophisticated stacking robots in use with the High-Speed Stacker can now be more easily controlled and operated.

Improved safety

A critical requirement of machine manufacturers and operators is seamless safety between humans and machines.

A truly safety-integrated system is a complete and consistent safety portfolio, which covers all tasks to be accomplished in the field of safety technology – ranging from detecting through evaluating, to reacting. In float glass production, safety is a critical concern. The automation built into the Grenzebach system greatly increases safety with handling sheet glass, resulting in far less accidents and injuries.

The Siemens S7 controllers are SIMATIC Safety Integrated, which provide the highest level of safety for humans, machines and environ¬ment. They are used to prevent accidents and damage resulting from a fault or mal¬function. The safety SIMATIC controllers monitor themselves, detect faults autonomously and immediately change into or remain in a safe mode when a fault occurs. They are optimized for use in production engineering and provide air-tight safety for all operations.

Fail-safe CPUs have been exercised for safety-oriented applications with the Grenzebach High-Speed Stacker and all other equipment on the cold-end line. The PROFIsafe profile for safe communication via PROFIBUS and PROFINET allows the integration of safety-related functions into standard automation environments.

Automation for a changing market

“We are making the SIMOTION and SIMATIC technology available to float glass producers so they can benefit from its system-wide controls capability and streamline their cold-end line production,” says Chad Shaffer with Siemens.

“This totally-integrated solution has been successfully applied to many other industries, but it is quite unique to float glass production until now.”

“Siemens has teamed with Grenzebach to help effect production efficiencies in the glass industry,” continues Shaffer. “More efficient equipment, safer production systems and a better bottom line for glass producers are our objectives.”

As glass producers deal with the influence of an increase in cheaper off-shore glass being imported and a more diverse product mix, production automation is more important than ever before. With new equipment providing better solutions, like the High-Speed Stacker equipped with a truly integrated controls package, glass fabricators stand in a much better position to operate their plants more efficiency and maintain a more competitive stature in the market.

 

 

Grenzebach Corporation can be reached by contacting: www.grenzebach.com

Grenzebach is a pioneer in float glass cold-end equipment. In 1974, the company developed the world’s first processing systems for automated float glass production. In addition to machines for transport and handling operations, and cutting and breaking lines, systems for identifying flaws, glass quality control and optimization of material yield have also been created.

The first piece of Grenzebach equipment to exclusively utilize this advanced automation technology is the company’s new High-Speed Stacker. Designed to increase glass manufacturer’s efficiency and flexibility, it was developed for stacking small glass formats with high cycle times, and is currently the only device which can stack glass sheets in less than a one-second cycle.

OR

SIEMENS INDUSTRY, INC.
Drive Technologies — Motion Control
390 Kent Avenue
Elk Grove Village, IL  60007
Phone: 847-640-1595 Fax: 847-437-0784
Web:  www.usa.siemens.com/motioncontrol
Email:  SiemensMTBUMarCom.industry@siemens.com
Attention:  John Meyer, Manager, Marketing Communications

Continue reading